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Abstract

We have used 86 pb�1 of data collected with the Collider Detector at Fermilab (CDF)

to measure the cross section for production of two or more jets as a function of

dijet invariant mass. The data are corrected for detector response and calorimeter

resolution e�ects. Our results are compared with predictions from next-to-leading

order Quantum Chromodynamics (QCD) and a measurement performed by the D�

experiment. We see a trend, similar to the excess observed in the inclusive jet cross

section at high transverse energy, but �nd our data to be in agreement with the QCD

predictions. The CDF and D� data are in good agreement.
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Introduction

Particle physics addresses the question, \What is the world made of?" on the

most fundamental level. The beginning of particle physics can be attributed to

J.J. Thompson, who discovered the electron in 1897 [1]. In 1911, E.Rutherford showed

that the atom consisted of a hard core that was surrounded by a cloud of electrons

[2]. When J.Chadwick discovered the neutron in 1932 [3], the most important ques-

tions about the structure of matter seemed to have been answered. However, one year

later, C.D.Anderson established the existence of the positron [4], the �rst antiparticle

postulated by P.A.M.Dirac. Subsequently, the muon [5] and the neutrino [6] were

discovered, and by the late 1950's an inexplicable number of other particles (hadrons)

were found.

In 1964, M.Gell-Mann [7] and G. Zweig [8] independently proposed that hadrons

were built up from even 'more elementary' particles, which Gell-Mann called quarks.

The Standard Model of elementary particle physics was developed. According to the

Standard Model, all matter (and antimatter) consists of six quarks, six leptons and

their respective antiparticles. The fundamental interactions between particles (with

the exception of gravity) are described in terms of the exchange of gauge bosons.

Despite several open questions, the Standard Model is the most promising theory

available to describe nature, a notion that received important further support by the

discovery of the gauge bosons of the weak interaction at CERN in 1983 [9] and the

discovery of the top quark at Fermilab in 1994 [10, 11].

While the Standard Model describes the electromagnetic and the weak interactions

1
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very successfully, the theory of the strong interaction, the interaction that binds

quarks inside the nucleons and nucleons inside the nuclei, still remains partly a mys-

tery. The best candidate for a theory of the strong interactions is the theory of

Quantum Chromodynamics (QCD). However, due to the nature of QCD, accurate

quantitative predictions are extremely di�cult to obtain and QCD calculations still

rely on semi-phenomenological models and a variety of assumptions.

A characteristic feature of QCD is the occurrence of collimated bunches of hadronic

particles, called jets. In this thesis, we measure the cross section for the production

of two or more jets as a function of the dijet mass at a center-of-mass energy of

1.8TeV, currently the highest in the world. This large centre-of-mass energy allows

the production of extremely massive dijets with masses of up to 1TeV/c2. The mea-

sured dijet mass distribution spans six order of magnitude and provides an excellent

testing ground for comparisons with QCD calculations, as well as testing our under-

standing of jet dynamics. This measurement is particularly interesting in light of the

recent CDF measurements of the inclusive transverse jet energy distribution [12] and

the total transverse jet energy [13]. Both observed an excess in the data over QCD

predictions at high jet energies.

This dissertation is organized as follows: Chapter 1 provides a short theoretical in-

troduction; the Standard Model is introduced, the theory of the strong interactions

is discussed and the analysis method is outlined. Chapter 2 gives an overview of the

CDF detector and discusses the aspects of the detector that are relevant to this anal-

ysis. The data selection, the experimental jet-�nding method and the measurement

of the dijet mass cross section is explained in Chapter 3. The unsmearing procedure,

which enables us to compare our data to QCD predictions, is the topic of Chapter 4.

The systematic uncertainties on our measurement are discussed in Chapter 5 and the

results are presented in Chapter 6. A summary and outlook concludes this thesis.



Chapter 1

Theoretical Introduction

1.1 The Standard Model: An Overview

The properties of all elementary particles and the details of their interactions, with

the exception of gravity, are described by the Standard Model. Particles in the Stan-

dard Model are considered to be elementary in the sense that they do not exhibit

any observable spatial structure and are therefore, classically speaking, point-like.

Elementary particles are divided into two groups, half-integer-spin particles, called

fermions, and integer-spin particles, called bosons. While fermions provide the build-

ing blocks of matter, interactions between particles are mediated by bosons.

1.1.1 Matter

Fermions exist in two di�erent types, leptons and quarks, the main di�erence be-

ing that leptons do not couple to the strong interactions (see below). The Standard

Model contains six leptons, six quarks and their respective antiparticles. The six lep-

tons are the electron (e), the muon (�), the tau (�) and their neutrino counterparts

(�e; �� and �� ). The six quark 
avours are called up, down, charm, strange, top and

bottom (u; d; c; s; t and b). There are three generations of leptons, each generation

3



4 CHAPTER 1. THEORETICAL INTRODUCTION

containing one lepton doublet and one quark doublet. Except for di�erences in the

masses, nothing seems to further distinguish between the three generations. Leptons

and antileptons are assigned the lepton numbers +1 and�1, respectively. The num-
ber of leptons is conserved so that leptons and antileptons can only be created and

destroyed in pairs. Furthermore, no transition from one lepton generation to another

has been observed experimentally to date. This is referred to as the generation-wise

conservation of lepton number. Similarly, the baryon number is a conserved quan-

tity, with quarks and antiquarks being assigned the baryon numbers +1=3 and �1=3,
respectively. Table 1.1 lists the particles of the Standard Model.

Generation Quarks Charge Leptons Charge

1 up u 2/3 electron-neutrino �e 0

down d �1=3 electron e �1

2 charm c 2/3 muon-neutrino �� 0

strange s �1=3 muon � �1

3 top t 2/3 tau-neutrino �� 0

bottom b �1=3 tau � �1

Table 1.1: The particles of the Standard Model.

In the naive quark-parton model [14], quarks and antiquarks are the fundamental

building blocks of matter from which all strongly interacting particles, hadrons, are

built up. Hadrons are subdivided into two classes, mesons and baryons.

Mesons are bound systems consisting of a quark (q) and an antiquark (�q) with a total

spin of either 0 or 1; they are bosons. Like any other quantum mechanical bound

system, mesons have a discrete energy level spectrum, corresponding to the di�erent

modes of q�q excitation, e.g. rotations or vibrations. A typical example of a meson is

the positive pion (�+), a combination of u and �d quarks.
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Baryons are three-quark systems, consisting of either three quarks (qqq) or three

antiquarks (�q�q�q). They carry a total spin of either 1/2 or 3/2 and are fermions.

Examples of baryons are the proton (uud) and the neutron (udd). Each baryon

(antibaryon) carries the baryon number +1 (�1).

1.1.2 Forces

The three fundamental interactions within the Standard Model, the electromagnetic,

the weak and the strong interactions, are described by a special class of theories,

called gauge �eld theories. In a gauge �eld theory, the Lagrangian of an interaction

is required to be invariant under local gauge transformations. The local invariance of

the theory is ensured by requiring that the 4-potential of the interaction transforms

in an appropriate way. In other words, changes in the 4-potential compensate for

local gauge changes, resulting in an invariant Lagrangian. The full Lagrangian can

be obtained by imposing local gauge invariance, Lorentz invariance, invariance under

space inversion and time reversal, and renormalizability on the theory [15]. A theory is

said to be renormalizable if the various unphysical in�nite contributions, that typically

arise in quantum �eld theories, can all be consistently eliminated.

By regarding classical �elds as operators and by setting up canonical commutation

relations for them, the theory can be quantized. In a quantized gauge theory the

quantized states of the 4-potential are associated with the mediators of the interaction,

the gauge bosons, and the interaction is described in terms of an exchange of gauge

bosons between fermions, see Fig. 1.1. While all known gauge bosons are spin-1

particles, their properties depend on the nature of the underlying gauge theory.

The Electromagnetic Interaction

The prototypical and most accurate quantum gauge theory is the theory of Quantum

Electrodynamics (QED), which describes the electromagnetic interaction. The gauge
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Figure 1.1: Interactions in the framework of gauge �eld theories: A gauge boson is
exchanged in between two interacting fermions. a) Electromagnetic interaction: A
photon is exchanged between an electron and a positron. b) Strong interactions: A
gluon is exchanged in between two quarks.

boson associated with the electromagnetic force is the photon. Because of the in�nite

range of the electromagnetic �eld, the photon is massless. Quantum Electrodynamics

is locally invariant under the following local gauge transformation [16]

	(x)! eie�(x)	(x) (1.1)

A�(x)! A�(x) + @�(x)=@x�; (1.2)

with the electron �eld, 	(x), the photon �eld, A�, the electron charge, e, and the

arbitrary gauge parameter, �(x). The phase factor, eie�(x), belongs to the group

U(1), the unitary group in one dimension and QED is called a U(1) theory. Since

U(1) transformations are commutative, QED is an Abelian gauge theory. The photon

�eld plays a crucial role, for without it, there could be no local gauge invariance.

The extremely high accuracy with which QED predicted, for instance, the anoma-

lous magnetic moment of the electron encouraged attempts to �nd other possible

symmetry groups that would provide the basis of a more general description of the
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fundamental forces in terms of gauge theories.

The Weak Interactions

The weak interactions take place between all quarks and leptons. They lie behind

processes like the nuclear beta decay, which allows protons to turn into neutrons and

vice versa. Weak forces are vital for the synthesis of heavy elements in the early

universe and for the fusion power cycles in stars. They are so feeble that they are

usually swamped by the much stronger electromagnetic and strong interactions. The

weak interactions are mediated by massive vector bosons, W� and Z0, in analogy

with photon exchange in electromagnetic interactions.

The Glashow-Salam-Weinberg Model of the Electroweak Interaction

The electromagnetic and the weak interactions were uni�ed in the 1960's by Glashow,

Salam and Weinberg [17] with their SU(2)xU(1) electroweak model. In order to de-

scribe the weak interactions, they chose a SU(2) symmetry1 with the three gauge

bosons, W+;W� and W 0, corresponding to the three generators of the group SU(2).

To be able to describe both interactions with one theory, an additional symmetry,

U(1), had to be introduced with the corresponding gauge boson Y 0. The two observ-

able neutral gauge bosons of the theory, the photon and the Z0, cannot be directly

associated with theW 0 and the Y 0. Instead, they are quantum mechanical superposi-

tions of the two with the electroweak mixing or Weinberg angle, �W , which determines

the degree of mixing between the two parts of the theory.

The short-range nature of the weak interaction requires the gauge bosons to be mas-

sive. However, the presence of mass terms in the Lagrangian spoils the local gauge

invariance of the theory. The introduction of massive gauge bosons, while preserving

the invariance of the theory, is possible through the process of spontaneous symmetry

1SU(2) denotes the special unitary group in two dimensions, where 'special' means that the
determinants of the matrices that generate the group are +1.
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breaking [18] or Higgs mechanism. The Higgs mechanism requires the presence of (at

least) one more boson, the Higgs boson. Whereas the masses of the electroweak gauge

bosons are predicted by the theory, the mass of the Higgs boson is a free parameter

and can be determined only experimentally. After the discovery of the weak gauge

bosons and the top quark, the question of the existence and mass(es) of the Higgs

boson(s) is one of the most important outstanding issues in particle physics today.

The Strong Interactions

Analogous to the electromagnetic and the weak interactions, the strong interactions

can be described by using a group-theoretical approach. Introducing the colour quan-

tum number and eight gauge bosons, called gluons, the strong interactions can be de-

scribed in terms of a SU(3) local gauge symmetry. This theory is known as Quantum

Chromodynamics (QCD). Since this thesis directly compares experimental data with

predictions from QCD, the features of this theory are described in more detail in the

next section. Table 1.2 summarizes the interactions of the Standard Model.

Force Gauge Boson(s) Symmetry acts on Example

electromagnetic photon U(1) quarks, e; �; � atomic binding

weak W+;W�; Z0 SU(2) all fermions �-decay

strong 8 gluons SU(3) quarks nuclear binding

Table 1.2: Summary of the interactions of the Standard Model.

1.2 Quantum Chromodynamics and Jets

In this section the theory of the strong interactions, Quantum Chromodynamics,

is introduced. Whereas the electromagnetic and the weak forces are well-described
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by the SU(2)xU(1) electroweak model, QCD provides a less complete picture of the

strong interactions, due to its non-perturbative nature. A characteristic feature of

QCD is the occurrence of collimated bunches of hadronic particles, called jets.

1.2.1 The Static Quark Model

During the 1960's, when large amounts of data on baryon and meson resonances were

accumulated, regularities or patterns were noted among these hadron states. In 1964,

M.Gell-Mann and G. Zweig showed that the regularities could be accounted for by

postulating three types of fermion constituents in a baryon, which Gell-Mann called

quarks2. These quark types or 
avours were called u (for up), d (for down) and s (for

strange). However, this simple model failed when used to classify the �++ baryon

resonance. The �++ was thought to be made up of three u quarks, which all had to

be in the same spin state (spin-up), thereby violating the Pauli exclusion principle

[20], which states that no two fermions in a single system can carry identical quantum

numbers. In order to resolve this con
ict, a new charge, called colour, was introduced.

The colour charge is the source of interquark forces, just as electric charge is the source

of electromagnetic forces between charged particles. It was postulated that each quark

exists in three di�erent colours, red, green and blue and that baryons and mesons

are colour singlets. Mesons are built up of quark-antiquark combinations, with the

antiquark carrying the anticolour of the quark and the three quarks in a baryon carry

one colour each, adding up to zero net colour charge. Subsequently, it turned out

that this additional degree of freedom was necessary for other reasons as well.

2Gell-Mann took this term from James Joyce's novel Finnegans Wake. In Gell-Mann's own
words: 'In 1963, when I assigned the name \quark" to the fundamental constituents of the nucleon,
I had the sound �rst, without the spelling, which could have been \kwork". Then, in one of my
occasional perusals of Finnegans Wake, by James Joyce, I came across the word \quark" in the
phrase \Three quarks for Muster Mark". ... From time to time, phrases occur in the book that
are partially determined by calls for drinks at the bar. I argued, therefore, that perhaps one of
the multiple sources of the cry \Three quarks for Muster Mark" might be \Three quarts for Mister
Mark," in which case the pronunciation \kwork" would not be totally unjusti�ed. In any case, the
number three �tted perfectly the way quarks occur in nature.' [19]. The term originally used by
Zweig was aces.
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1.2.2 The Quark-Parton Model

A dynamical (rather than static) understanding of the structure of hadrons has its

origin in 1968, when data from deep-inelastic lepton-nucleon scattering led to the

development of the quark-parton model. Data from inelastic scattering showed an

approximate independence of the total cross section on the energy of the neutrino.

This scaling behavior was �rst predicted by Bjorken [21] and is commonly referred

to as Bjorken scaling. The interpretation of scaling is that the neutrino interacts

with point-like constituents inside the nucleon, called partons, a term introduced

by Feynman. In the quark-parton model, hadrons are composed of many partons.

Protons, for example, are composed of three valence quarks (uud) and a number of

virtual partons into which it constantly dissociates. These virtual constituents can

either be gluons or virtual quark-antiquark pairs (sea quarks). The lifetimes, �virt, of

the virtual partons are limited by the Heisenberg uncertainty principle [22], according

to which �virt � �h=�E, with the energy di�erence, �E, between the hadron and the

virtual state. In the quark-parton model, partons inside hadrons are massless and

move collinearly with their parent hadron.

Suppose that fi(xi) is the probability for �nding a parton, i, inside the hadron with a

certain fraction, xi, of the total hadron momentum. The inclusive cross section is then

given by the cross section for scattering o� the parton times fi(xi)dx, summed over all

partons i and integrated over dx. The parton distributions are empirically determined

from deep inelastic scattering data, in which electrons or neutrinos are scattered o�

hadrons. There are several competing parameterizations of the parton distribution

functions (PDF). A typical example of the distributions for valence u-quarks, valence

d-quarks and gluons, as a function of x, are shown in Fig. 1.2 [16].

The identi�cation of the partons with quarks lead to the expectation that the parton

distribution function integrals

Z 1

0
[u(x) + �u(x) + d(x) + �d(x) + s(x) + �s(x)]x dx � 1; (1.3)
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Figure 1.2: A typical example of parameterizations of the parton distribution func-
tions. Shown are the distributions for valence u-quarks, valence d-quarks and gluons.

since the total fractional momentum summed over all constituents is necessarily unity.

However, in 1972, �ts to deep inelastic scattering data resulted in a value for this sum

of only about 0.5 [23]. This was a �rst indication that gluons had a real dynamical

meaning, since the remaining half of the proton momentum had to be carried by neu-

tral constituents, the gluons, which themselves participated in the scattering process.

One year later, deviations from the scaling behavior of the parton distribution func-

tions in muon scattering experiments were observed at Fermilab [24]. These scaling

violations could not be explained with the parton model. A new theory of the strong

interactions, called Quantum Chromodynamics, was developed.

1.2.3 QCD and the Running Coupling Constant

Quantum Chromodynamics [25] is regarded as the fundamental theory of the strong

interactions, the interactions between quarks and gluons. It associates the colour

charge, introduced to explain the �++, with the charge of the strong interaction, and

identi�es the neutral particles, discovered as 'missing momentum' in deep inelastic



12 CHAPTER 1. THEORETICAL INTRODUCTION

scattering, with the gluons. Finally, QCD takes the dynamical properties of the gluons

correctly into account to explain, for instance, the observation of scaling violations.

The theory of QCD is a non-Abelian gauge theory, based on the SU(3) colour symme-

try and eight corresponding gauge bosons, the gluons. Quarks carry a colour charge

(red, green or blue) and antiquarks carry a corresponding anticolour (antired, anti-

green or antiblue). They are held together by the exchange of gluons, which carry

two labels, one colour and one anticolour. A quark can change its colour by emitting

a gluon with the appropriate colour-anticolour combination. Only coloured particles

can emit or absorb gluons. Leptons and the other gauge bosons are colourless and do

therefore not interact strongly.

Since no coloured particles were observed experimentally it was postulated that only

colourless combinations of quarks and antiquarks were allowed. The simplest colour-

less con�gurations of quarks are (i) quark-antiquark combinations (one colour and

one anticolour) and (ii) three quarks or three antiquarks (one of each colour or anti-

colour). These are exactly the valence-quark combinations that describe the known

baryons and mesons. The impossibility to observe colour is one of the main char-

acteristics of the strong interactions. It arises naturally within the framework of a

SU(3) gauge theory.

When calculating the cross section for a certain interaction, the picture of a simple

exchange of a gauge boson, as in Fig. 1.1, yields only the approximate, lowest-order

solution. In principle one has to include processes of higher orders as well, for instance

a process in which the exchanged photon 
uctuates into an e+e�-pair, see Fig. 1.3.

These higher-order terms generally lead to divergences (in�nite values) of the cross

section if integrated over all possible momentum transfers. In order to obtain physi-

cally meaningful (�nite) results, the theory must be renormalized. This is done by a

special, but arbitrary, prescription that introduces a new dimensional scale, the renor-

malization scale, �. Renormalization procedures with di�erent values of � all have

to lead to the same observable amplitudes, a fact that is expressed by the Renormal-
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Figure 1.3: Higher-order corrections to interactions. a) e+e�-loop correction to the
exchange of a photon. b) q�q-loop correction to the exchange of a gluon. c) Gluon
self-interaction term.

ization Group Equations. In practice, however, amplitudes can only be calculated

in perturbation series of the interaction's coupling strength. Since the number of

possible diagrams and the complexity of the calculations involved rise dramatically

with the order of the calculation, the series has to truncated and amplitudes depend,

however slightly, on the value of �.

The coupling strength of an interaction is determined by the charge of the particles

associated with it. Higher-order processes in the calculations lead to a dependence of

the strength of the interaction with the negative square of the 4-momentum transfer,

Q2. It turns out that, despite the similarities between QED and QCD, the Q2-

evolution of their coupling constants is fundamentally di�erent. Due to the non-

Abelian nature of QCD the gluons carry colour charges themselves, giving rise to a

QCD Lagrangian that contains gluon self-interaction terms. This is in sharp contrast

to QED, where the photon is electrically neutral and does not couple to itself, a fact

that is re
ected by the Abelian nature of the U(1) symmetry.
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In the case of QED vacuum polarization, the production of virtual electron-positron

pairs (Fig. 1.3a)) that surround the electron, leads to a screening of the electron's

charge. The strength of the electromagnetic interaction therefore decreases with

larger distances (corresponding to smaller Q2 values) from the electron.

In the case of QCD three e�ects contribute to vacuum polarization. The production of

virtual quark-antiquark pairs result in a screening of the colour charges of the quarks,

similar to the QED e�ect, see Fig. 1.3b). This e�ect is dependent of the number of

quark 
avours, nf . Two additional e�ects from the production of virtual gluon pairs

result in an anti-screening of the colour charge of the quark (Fig. 1.3c)) [26]. Taking

all these e�ects into account, the e�ective QCD coupling strength, �s (Q
2), is given

to the order O (�2
s) by [27]

�s (Q
2) =

12 �

(33 � 2nf) ln
Q2

�2

QCD

; (1.4)

with

�2
QCD = �2 exp

 �12 �
(33 � 2nf)�s (�2)

!
: (1.5)

The parameter �QCD is to be determined by experiment. The theory is applicable

only for Q2 � �QCD, for which the values of �s are small, so that perturbation theory

can be applied. Since nf is assumed to be six, the strong coupling constant �s (Q
2)

decreases with increasing Q2. At su�ciently high values of Q2, �s gets arbitrarily

small. This is called the asymptotic freedom [28] of the strong interactions. The value

of �s is usually quoted at a Q2 equal to the square of the mass, MZ , of the Z boson.

The current world average value is [29]

�s(M
2
Z) = 0:119� 0:002: (1.6)

The decrease of the coupling strength with Q2 implies that the colour forces increase

with the distance between quarks. It is impossible to completely separate two quarks
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because their potential energy is proportional to the distance between them. Once the

energy is large enough, a quark-antiquark pair (a meson) is created from the vacuum.

This phenomena is called colour con�nement. Despite the absence of an analytic

proof, due to the complicated mathematical structure of QCD, the concept of colour

con�nement is widely accepted since no coloured objects have been observed.

1.2.4 Evolution Equations for the Parton Densities

Because of their colour charge, gluons can be radiated o� other gluons or quarks before

and after an interaction. These gluon bremsstrahlung processes introduce an explicit

non-scaling Q2-dependence to the parton distribution functions. The Q2-evolution of

the quark densities is described by the Altarelli-Parisi evolution equations [30]. The

quark evolution can be written as integro-di�erential equations for the quark densities

f(x;Q2) [27]:
df(x;Q2)

d logQ2
=

�s
2�

Z 1

x

dy

y
f (y;Q2)Pqq

 
x

y

!
: (1.7)

The equations express the fact that a quark with momentum fraction x could have

originated from a parent quark with a larger momentum fraction y that has radiated

a gluon. The probability that this happens is proportional to �s Pqq(x=y), where the

splitting function

Pqq(z) =
4

3

 
1 + z2

1� z

!
(1.8)

represents the probability of a quark emitting a gluon and so becoming a quark with

momentum reduced by a fraction z = x=y.

Equation (1.7) holds for valence quarks in the nucleon. The evolution of the sea

quarks is given by an analogous equation with a second term added, because the

gluons can transform into q�q pairs.

Given the quark structure functions at some reference point f(x;Q2
0), they can be

calculated at any value ofQ2 using the so called DGLAP (Dokshitzer-Gribov-Lipatov-
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Altarelli-Parisi) equations [30, 31, 32].

1.2.5 Jets in p�p Collisions

A direct consequence of the concept of colour con�nement is the occurrence of jets of

hadronic particles. The �rst evidence for multiple production of hadrons in nucleon-

nucleon scattering dates back to 1950 [33]. Quark-jets were �rst observed in 1975 by

the Mark-I Collaboration at SLAC [34]; four years later, experiments at the PETRA

collider at DESY reported the �rst evidence for gluon jets [35]. The �rst jets in p�p

collisions were observed by the UA2 Collaboration at CERN in 1982 [36].

The production of jets in proton-antiproton collisions can be understood with the help

of Fig. 1.4, which shows a schematic view of a hard p�p interaction. The collision is seen

as the interaction of a single parton, i, inside the proton with a single parton, j, inside

the antiproton. The remaining partons, called spectator partons, do not participate in

the interaction. The collision causes the proton and antiproton to disintegrate. The

nucleon remnants disappear down the beam pipe and are usually not detected. The

resulting hadrons, some of which decay further into lighter hadrons, are observed in

the detector. Since the transverse momenta of the partons are independent of the

energy of the parent hadron, one expects, at su�ciently high energies, the occurrence

of jets, bunches of hadronic particles, which all move in a similar direction. By

analyzing the characteristics of jets, one can gain insight into the kinematics and the

properties of the underlying partons. Since quarks and gluons can be observed only

indirectly through jets, the analysis of jets is a powerful tool to study the strong

interaction and to test the predictions of QCD.

1.2.6 Jet Fragmentation

The development of quarks and gluons into a hadronic �nal state, the hadronization

or jet fragmentation process, typically occurs at energies of a few GeV [37]. Because
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Figure 1.4: Schematic view of a hard proton-antiproton interaction.

of the (ln Q2)�1 behaviour of the strong coupling constant, perturbative methods can

not be employed. Instead, one has to rely on semi-empirical models that approximate

the process of jet fragmentation. Two examples of such models are the Feynman-Field

independent fragmentation model [38] and the LUND-string model [39]. Since the

latter is used in the Monte Carlo program that was employed in this analysis, it is

brie
y described here.

In the LUND-string model, the fragmentation does not depend on the nature of the

underlying scattering process but follows a general model. When a colour-neutral

q�q pair is created in a collision, a colour force �eld is created between them. For

a con�ning theory like QCD the colour lines of force are mostly concentrated in a

narrow tube connecting q with �q, acting like a string with a constant tension, k

(independent of the separation, r, between q and �q). Observed relations between the

angular momenta and the energies of light hadronic states indicate a potential of the

form [40]

V = kr; (1.9)

with a value of k � 1GeV/fm [16]. The colour tube is treated dynamically as a mass-

less, relativistic string. If the two ends of the string (the two quarks) are separated,
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the potential energy between q and �q rises linearly with r and the string breaks as

soon as su�cient energy for the production of a hadron is available. This process is

repeated until the invariant string mass is too low to produce any more hadrons.

Gluons are described in the LUND model as kinks in the colour string. The string

is suspended in between the gluon and the quarks, running from q to g to �q, see

Fig. 1.5a). Instead of attaching massless particles at the ends of the string, a massless

gluon is now attached to a point in the middle. A breaking of the string results in

two chains of mesons, similar to what one would get from two q�q strings, except that

one of the mesons includes a piece from both segments. Whereas the q�q string results

in two back-to-back-jets, the resulting hadron distributions from the q�qg system are

distributed around the direction of the original gluon, giving rise to a third jet, as

shown in Fig. 1.5b).

Figure 1.5: Gluon jets in the LUND-string model.

1.3 The Dijet Mass Cross Section

Most interactions in p�p collisions are due to soft processes and their cross sections

cannot be calculated from �rst principles. Only in selected kinematic regions can

one observe the hard scattering of the underlying partons and compare experimental

observations with perturbative QCD calculations. A parton-parton scattering results,

to lowest order, in four jets, two from scattered partons and two from the remnants
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of the broken-up nucleons. The latter, called spectator jets, are lost in the beam pipe

and are ignored in this analysis. The term dijet in this analysis refers to the two

jets that arise from the scattered partons. When these two jets hit the calorimeter

they are opposite in azimuth and their experimental signature is a very large energy

deposition in a localized region of the calorimeter. To lowest order, they have equal

transverse energies, ET = E sin �, where E is the energy of the jet and � is the polar

angle, with respect to the direction of the incoming proton.

1.3.1 Leading Order QCD Subprocesses

When discussing the parton-parton scattering process of the form AB ! CD it is

convenient to introduce the following Lorentz-invariant (Mandelstam) variables [27]:

ŝ = (pA + pB)
2;

t̂ = (pA � pC)
2; (1.10)

û = (pA � pD)
2;

where pA and pB are the 4-momenta of the incoming partons and pC and pD are those

of the scattered partons. The subprocess centre-of-mass energy squared, ŝ, is related

to the centre of mass energy squared, s, according to

ŝ = sxpx�p; (1.11)

where xp and x�p are the momentum fractions of the interacting partons inside the

proton and antiproton, respectively, that take part in the scattering process.

The leading order 2 ! 2 scattering subprocesses are listed in Table 1.3 [16]. Their

cross sections are of the form

d�̂

dt̂
(AB ! CD) =

j M j2
16�ŝ

: (1.12)
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The transition matrix element, M, can be calculated from Feynman rules for quark

and gluon propagators and vertices in QCD [15]. The lowest-order Feynman diagrams

that contribute to the cross section are shown in Fig. 1.6.

Subprocess j M j2 = (16�2�2
s) j M(900) j2 = (16�2�2

s)

qiqj ! qiqj

qi�qj ! qi�qj

9>>>>>=
>>>>>;

4
9
ŝ2+û2

t̂2
2.2

qiqi ! qiqi
4
9

�
ŝ2+û2

t̂2
+

ŝ2+t̂2

û2

�
� 8

27
ŝ2

ût̂
3.3

qi�qi ! qi�qi
4
9
t̂2+û2

ŝ2
0.2

qi�qi ! qj �qj
4
9

�
ŝ2+û2

t̂2
+

t̂2+û2

ŝ2

�
� 8

27
û2

ŝt̂
2.6

qi�qi ! gg 32
27

û2+t̂2

ût̂
� 8

3
û2+t̂2

ŝ2
1.0

gg ! qi�qi
1
6
û2+t̂2

ût̂
� 3

8
û2+t̂2

ŝ2
0.1

qig ! qig
ŝ2+û2

t̂2
� 4

9
ŝ2+û2

ûŝ 6.1

gg ! gg 9
4

�
ŝ2+û2

t̂2
+

ŝ2+t̂2

û2
+

û2+t̂2

ŝ2
+ 3

�
30.4

Table 1.3: QCD subprocesses that contribute to lowest-order parton-parton scattering
and the corresponding matrix elements squared, i.e. averaged over spin and colour
(from [16]).

Another quantity that in
uences the two-jet production cross section are the parton

distribution functions, fi(x), which were introduced in Section 1.2.2. With these

ingredients the two-jet production cross section can be written as [41]
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Figure 1.6: Feynman diagrams for lowest-order parton-parton scattering.

d3�

dy3dy4dp2T
=

1

16�ŝ2
X

A;B;C;D=q;�q;g

fA(x1; �
2)

x1

fB(x2; �
2)

x2
�

X j M(AB ! CD)j2 1

1 + �CD
; (1.13)

where pT = p sin � is the transverse jet momentum, the Kronecker delta, �CD, gives

an additional factor of 1
2
to identical �nal state partons, since they are summed twice,

and y3 and y4 are the rapidities of the �nal state partons, with

y =
1

2
ln

 
E + pz
E � pz

!
; (1.14)

where pz = p cos � is the longitudinal jet momentum.

Based on this description, a few simple characteristic features of the dijet mass cross

section can be derived. First, from Table 1.3 we can see that the largest contributions

to two-jet production stem from the elastic scattering processes (gg ! gg). Second,

the two-jet production cross section is directly proportional to the parton distribution

functions. Since gluons dominate the parton distributions at low x (see Fig. 1.2) we
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expect, at low dijet masses, the cross section to be dominated by gluon-gluon scatter-

ing. As we move towards higher x, quark-quark scattering becomes more important,

since the valence quarks dominate the parton distribution at high x. Third, the two-

jet production cross section is inversely proportional to the subprocess cross section

ŝ2 �M2
jj, where Mjj is the dijet invariant mass, de�ned as

Mjj =
q
(E1 + E2)2 � (~p1 + ~p2)2: (1.15)

We therefore expect a falling shape of the dijet mass distribution. At high x, corre-

sponding to high dijet masses, the fallo� of the parton distribution functions leads to

a steeper falling dijet mass cross section.

1.3.2 Higher-Order QCD Processes

Higher-order QCD processes result in more complicated con�gurations of partons.

Quarks and gluons can radiate o� gluons before and after the hard scattering process.

This is referred to as initial state and �nal state radiation. The probability of these

higher-order processes is proportional to the strong coupling constant �s. In the Q2-

range of the CDF data, the value of �s is around 0.1, so that processes of the order

n are suppressed by n orders of magnitude. Figure 1.7 shows selected examples of

higher-order Feynman diagrams that contribute to 2! 3 parton-parton scattering.

1.4 Outline of the Analysis

In this thesis we measure the di�erential dijet mass cross section, d�=dMjj, with the

dijet mass as de�ned in Eqn. (1.15), using the two leading jets, i.e. the two jets with

the highest transverse energies in an event.

Because we compare our data to next-to-leading order QCD calculations, which in-

clude processes that result in 3-jet events, we measure the inclusive dijet mass cross



1.4. OUTLINE OF THE ANALYSIS 23

Figure 1.7: Selected examples of higher-order Feynman diagrams that contribute to
2! 3 parton-parton scattering.

section. That means we do not restrict ourselves to events with exactly two jets but

include events with any number of jets in our analysis. In other words, we examine

events with two or more jets and count the number of these events as a function of

the dijet mass.

The fully corrected dijet mass cross section is measured in two steps. In the �rst step

we measure what we refer to as the partly corrected cross section. The partly corrected

cross section is based on data that are corrected for calorimeter response e�ects (non-

linearity and non-uniformity of response of the calorimeter), trigger e�ciencies and

data selection cut e�ciencies. The second step involves the correction of the data for

detector resolution e�ects, which result in a measured cross section that is di�erent

from the true cross section. We then compare the fully corrected dijet mass cross

section with predictions from next-to-leading order QCD calculations. This analysis

probes regions of dijet masses, higher than any previous experiment. The importance

of comparing the shape and normalization of the measurements to QCD predictions

is of particular interest as any signi�cant deviation may signal the presence of new

physics.



Chapter 2

The CDF Detector at the Tevatron

Collider

The experimental apparatus used in this study is located at the Fermi National Accel-

erator Laboratory (Fermilab) in Batavia, Illinois. Fermilab was founded in December

1968. Today, more man 2200 scientists from 20 countries work on numerous particle

physics experiments on the 28 km2 site, situated about 65 kilometers west of Chicago.

Fermilab's main accelerator, the Tevatron, produces proton-antiproton collisions at a

centre-of-mass energy of 1.8TeV, the highest available world wide today.

The system of particle accelerators that is used to accelerate and collide the protons

and antiprotons, culminating in the Tevatron, is brie
y described in Section 2.1. The

observation and analysis of these collisions involves the use of a multipurpose particle

detector, the Collider Detector at Fermilab (CDF). Section 2.2 introduces the overall

layout of the CDF detector and sections 2.3 through 2.7 describe its main components.

Emphasis is placed upon the system of calorimeters, the part of the detector most

relevant to this analysis.

24
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2.1 The Tevatron Collider

In the fall of 1985, the Tevatron p�p collider came into operation. The Tevatron [42] is a

synchrotron with a circumference of 6.3 km that accelerates protons and antiprotons

to energies of 900GeV, corresponding to a centre-of-mass energy of
p
s=1.8TeV.

They collide in two interaction regions, where the two particle detectors, CDF and

D�, are installed to record the products of the p�p interactions. The Tevatron tunnel

has an inner diameter of 3m and is situated 6m underground.

Before protons and antiprotons reach their nominal Tevatron energies, a set of pre-

accelerators is used as an injection system. A Cockcroft-Walton pulsed ion source

provides the �rst stage of acceleration, during which electrons are added to hydrogen

atoms and the resulting negative ions are accelerated to an energy of 750 keV. The

150m-long Linear Accelerator (Linac) accelerates the H� ions further to 400MeV be-

fore injecting them into the Booster accelerator. During the injection, both electrons

are stripped from the H� ions by passing them through a carbon foil. The Booster

is an alternating gradient synchrotron with a diameter of about 150m. It accelerates

the resulting protons to energies of 8GeV and loads twelve bunches of protons into

the Main Ring. In the Main Ring, a synchrotron that is housed in the same tunnel as

the Tevatron, the protons are accelerated to energies of around 150GeV before they

are injected into the Tevatron for the �nal stage of the acceleration process. In the

Tevatron, which is located directly below the Main Ring, the protons reach their �nal

energy of 900GeV. To keep protons and antiprotons on a circular orbit, the Tevatron

is equipped with 774 superconducting dipole magnets. The magnet coils produce

a magnetic �eld of 4.4T and consist of superconducting niobium-titanium (Nb-Ti)

�laments embedded in copper. Liquid helium is used to cool them to their operating

temperature of 5K.

A counter-rotating beam of antiprotons is produced by using 120-GeV protons that

are extracted from the Main Ring and strike a 7-cm-thick nickel or copper target [43].

The antiprotons are then directed into the Debuncher, a ring with a circumference
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of 520m, where they are stochastically cooled [44], before they are transfered to the

Accumulator, a ring that is concentric with the Debuncher, for storage and further

cooling. Once enough antiprotons are accumulated they are injected into the Main

Ring, accelerated to 150GeV and transferred into the Tevatron, where they are, in

counter-rotation to the protons, accelerated to their �nal energy of 900GeV.

The Tevatron operates with bunches of protons and antiprotons. During Run I, in-

stantaneous luminosities in excess of 2 �1031cm�2sec�1 were achieved with six bunches
of protons and antiprotons. Each proton and antiproton bunch consisted of about

2 � 1011 and 6 � 1010 particles, respectively [45]. The corresponding time between con-

secutive bunches was 3.5�s. Figure 2.1 shows the Tevatron collider and the system

of pre-accelerators.

2.2 Layout of the CDF Detector

The CDF detector is a multipurpose detector, designed to measure the momenta,

energies, scattering angles, and, where possible, determine the identities of the par-

ticles produced in Tevatron p�p collisions. Event analysis is based on charged particle

tracking, magnetic momentum analysis, �ne-grained calorimetry and muon detection.

The total weight of the detector is about 5000 t. The CDF collaboration consists of

over 450 physicists from 47 institutions.

The calorimeter system covers the detector pseudorapidity region of j�dj < 4:2, while

covering the full range of the azimuthal angle, �. It has approximately uniform

granularity in �d and �. The central tracking chambers measure charged particle

momenta in the range 21o < � < 159o. The momenta of charged particles are analyzed

in a 1.4T solenoidal magnetic �eld. Muon coverage is provided by drift chambers in

the region j�dj < 1 and by large forward toroid systems in the region 1:96 < j�dj <
3:64. The approximately 140 000 detector channels are read out by a custom front-end

electronics system, followed by a large Fastbus network. Data acquisition is handled
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Figure 2.1: The Tevatron collider and the system of pre-accelerators.

by a three level trigger system.

The overall layout is as follows. The detector consists of a 2000 t movable central

detector and two identical forward/backward detectors. The central detector is made

up of the tracking chambers, the solenoidal magnet, the steel yoke, electromagnetic

and hadronic calorimeters, and muon chambers. The forward/backward detectors

consist of electromagnetic and hadronic calorimeters, and steel toroidal magnets,

used as muon spectrometers. Single layers of scintillation counters in front of the

electromagnetic shower counters serve as luminosity monitors and 'minimum bias'
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triggers. Figure 2.2 shows perspective views of the CDF detector.

The CDF coordinate system is right-handed, with the origin de�ned to be in the centre

of the detector. The x axis points radially outwards in the plane of the Tevatron, the

y axis points upward, and the z axis points along the direction of the protons. The

pseudorapidity is de�ned according to

� = � ln

 
tan

�

2

!
: (2.1)

In the following, we distinguish between the physics pseudorapidity, �, and the detec-

tor pseudorapidity, �d. Whereas the measured z vertex is used for the determination

of �, a z vertex of zero is assumed for �d. The two quantities are equal for interactions

occurring at z = 0 and they di�er by about � 0.2 for z = � 60 cm.

Starting from the interaction point (vertex), a description of the detector components

is given below. For the present analysis the central, endwall, and plug calorimeters

are of special importance. These parts of the detector are therefore described in

more detail. For a comprehensive description of the CDF detector, see [46, 47] and

references therein.

2.3 The Tracking System

Within the magnetic �eld of the solenoid there are three separate tracking systems for

charged particles, the silicon vertex detector, a vertex drift chamber and the central

tracking chamber.

Immediately surrounding the beam pipe is a four-layer silicon microstrip vertex detec-

tor (SVX') [48], a radiation-hard version of the SVX that was installed in 1993. The

SVX' consists of two identical 51 cm-long cylindrical modules that meet at z = 0.

The four layers of the SVX' are at distances of 2.9, 4.2, 5.7, and 7.9 cm from the

beamline, respectively. Axial microstrips provide precision track reconstruction with



Figure 2.2: Perspective view of the CDF detector along the beam axis (upper picture).
Schematic side view of one quadrant of the CDF detector (lower picture).
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a single-hit reconstruction of 13�m and an impact parameter resolution of 17�m.

Outside the SVX' is a set of vertex drift chambers (VTX) that provide tracking

information up to a radius of 22 cm. The VTX measures tracks used to reconstruct

the vertices of p�p interactions with a precision of 1mm in the z direction.

Both the SVX' and the VTX are mounted inside the central tracking chamber (CTC)

[49]. The CTC is a 3.2,m-long drift chamber with an outer radius of 132 cm, covering

the �d-region �1 < �d < 1. It contains 6156 sense wires in 84 cylindrical layers,

grouped into nine 'superlayers'. Five of these superlayers have wires parallel to the

beam direction (axial wires) and provide tracking in the r � � plane. The four

remaining superlayers are tilted by � 30 with respect to the beam direction (stereo

wires) and, together with the axial wires, provide tracking information in the r � z

plane. The two-track resolution of the CTC was measured to be 3.5mm, the spatial

resolution is better than 200�m in r � � and 6mm in z.

2.4 The Solenoid Magnet

In order to obtain precise momentum determination for charged particles that are

produced in the central region, the CTC is immersed in a uniform 1.4T magnetic

�eld along the beam direction. The �eld is produced by a 3m-diameter, 5m-long

superconducting solenoidal coil. The coil is made of 1164 turns of a NbTi/Cu super-

conductor, cooled with liquid helium. The overall thickness of the coil and cryostat

is 0.85 radiation lengths.

2.5 The Calorimeter System

The CDF calorimeter system consists of four sections, the central, endwall, plug, and

forward calorimeters, covering the range of j�dj < 4:2 and the full azimuthal range.

In this analysis, the central, endwall, and plug calorimeters were used to measure



2.5. THE CALORIMETER SYSTEM 31

the energies and directions of the jets, whereas the forward calorimeter was used for

background rejection only.

All CDF calorimeters are constructed with a projective tower geometry to measure

the energy 
ow in �ne bins of pseudorapidity and azimuthal angle. The term 'pro-

jective' indicates that the towers point towards the nominal interaction point. By

measuring the energy deposited by a particle in a projective tower, the angle with

which it emerged from the vertex is measured simultanously. In the central, plug,

and forward regions, each tower consists of an electromagnetic section in front of a

hadronic section. Although some hadronic energy is deposited in the electromag-

netic section, comparisons of electromagnetic and hadronic energies can be made on

a tower-by-tower basis. The calorimeters are made up of approximately 5000 towers.

Their height is about 0.1 units in �d and their width ranges from 5 to 15o in �.

All CDF calorimeters are sampling calorimeters, which, as opposed to total absorption

calorimeters, only sample a fraction of the energy deposited by an incoming particle.

Two types of sampling calorimeters are employed at CDF. While the central and end-

wall calorimeters have scintillator sampling, the plug and the forward calorimeters

are gas based. Scintillator calorimeters were chosen for the low-j�dj region because of
their good energy resolution, due to their larger sampling fraction, compared to gas

calorimeters. In the more forward region of the detector energy resolution becomes

less critical. At the same time, a �ner transverse segmentation is needed to realize

the same spatial resolution as in the central calorimeter. In addition, the high multi-

plicities in the forward region would age scintillator too quickly. As a result, all CDF

calorimeters in the region j�dj > 1:2 are gas based. Table 2.1 gives a summary of the

properties of the central, the endwall and the plug calorimeters.

2.5.1 The Central Calorimeter

The solenoid is surrounded by the central calorimeter. It consists of 48 wedge-shaped

modules, assembled into four self-supporting arches that rest on the yoke box. The
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Central Endwall Plug

EM Hadron Hadron EM Hadron

j�dj coverage 0 - 1.1 0 - 0.9 0.7 - 1.3 1.1 - 2.4 1.3 - 2.4

Tower size, ��d x�� � 0.1 x 15o � 0.11 x 15o � 0.09 x 5o

polystyrene acrylic acrylic Proportional
Active medium

scintillator scintillator scintillator tube chambers

Scintillator thickness

or tube size [cm]
0.5 1.0 1.0 0.7 x 0.7 1.4 x 0.8

Number of layers 31 32 15 34 20

Absorber Pb Fe Fe Pb Fe

Absorber

thickness [cm]
0.32 2.5 5.1 0.27 5.1

Energy resolution

at 50GeV
2% 11% 14% 4% 20%

Position resolution

at 50GeV [cm2]
0.2 x 0.2 10 x 5 10 x 5 0.2 x 0.2 2 x 2

Table 2.1: A summary of the calorimeter components most relevant to this analysis.

arches join together in pairs to provide complete azimuthal coverage. The central

calorimeter is composed of an electromagnetic and a hadronic section.

Central Electromagnetic Calorimeter

The Central Electromagnetic Calorimeter (CEM) [50] covers the region j�dj < 1:1. It

uses a hybrid design with scintillator/absorber sandwiches for energy measurement

and an embedded strip chamber for position determination and longitudinal shower

development. The hybrid design combines the good energy resolution of scintillator

with the high spatial resolution of a gas strip chamber.

The basic layout of one of the CEM wedges is shown in Figure 2.3. The innermost

part of the CEM is an 1.4mm-thick aluminum base plate, located at a distance of
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173 cm from the beamline. Electromagnetic shower measurement is performed by

using 31 layers of 5mm-thick SCSN-38 polystyrene scintillator. The individual pieces

of scintillator are wrapped in two layers of vellum drawing paper. Interleaved with the

scintillator are 30 layers of 0.3mm lead, clad on both sides with 0.4mm aluminum.

The pieces are assembled to form ten projective towers, each covering 0.1 units in

�d and 15o in �. Each side of the tower is covered with a 1.9mm-thick cover plate.

The gap in between the steel cover plates and the scintillator/absorber sandwiches

are �lled with wavelength shifters that collect the light emitted by the scintillator.

Two photomultiplier tubes per tower, one on either side, read out the signal.

Wave Shifter
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Y
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Electromagnetic Section

Phototubes

LeftRight
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Tow
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Figure 2.3: Schematic view of the light-collection system of the CEM. The hadronic
section is located directly on top of the electromagnetic section.

The CEM modules were initially calibrated with a 50GeV electron test beam. The

electron energy resolution for electrons between 10 and 100GeV was measured to be

�=ET = 13:5%=
p
ET � 2%, where ET is the transverse energy of the electrons in

GeV and the symbol � indicates that the independent contributions are added in
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quadrature.

The strip chambers are located near the shower maximum, between the �fth and

the sixth scintillator layers. High voltage wires are strung orthogonally to the strips,

which are made of copper-backed 1.6mm PC boards. The chambers determine shower

position and transverse development by measuring the charge deposition on the strips

and wires.

Central Hadronic Calorimeter

The Central Hadronic Calorimeter (CHA) [51], a pure sampling calorimeter without

strip chambers, covers the range j�dj < 0:9. It consists of 32 layers of 2.5 cm-thick

steel and 1 cm-thick PMMA-based scintillator, mounted on the outside of the CEM.

The tower structure of the CHA matches that of the CEM, i.e. there is a one-to-one

correspondence between the CEM and the CHA towers. Analogous to the CEM, the

light signal from the scintillator is collected by wavelength-shifters on either side of

the tower and read out by photomultiplier tubes.

Initial calibration of the CHA modules was done with a test beam of 50GeV pions.

No deviation from linearity of response was observed for pions that were minimum

ionizing in the CEM, in the energy range between 10 and 150GeV. The energy resolu-

tion of the CHA was found to be �=ET = 75%=
p
ET�3%. Calibration maintenance is

performed by using a pulsed laser system. Laser calibration results can be compared

with those of a separate calibration check done with a 137Cs source.

2.5.2 The Endwall Hadron Calorimeter

The Endwall Hadron Calorimeter (WHA) [51] �lls the gap between the central and

plug calorimeters. The towers of the WHA and the CHA combine to form a single

hadron calorimeter. The WHA covers the pseudorapidity region 0:7 < j�dj < 1:3

and consists of a hadronic section only. There are two separate wall calorimeters,
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one in either z direction from the interaction point. Each of the wall calorimeters

is azimuthally arranged in 24 separate modules that are mated to the corresponding

CHA wedges. The WHA towers are arranged in a projective geometry. Their size is

0.11 x 15o (��d x��).

Like the Central Hadron Calorimeter, the Wall Hadron Calorimeter is a pure steel--

scintillator sampling calorimeter with layers of 1 cm-thick acrylic scintillator. The

WHA consists of 15 layers of 5.1 cm-thick steel. The signal collection technique is

essentially the same as for the CHA.

The WHA was calibrated together with the CHA modules. The resolution of the

WHA for pions was measured to be �=ET = 105%=
p
ET � 5%. Compared to the

CHA, the energy-dependant term is larger by about a factor of
p
2, a value that is

expected from the lower sampling fraction, due to the thicker absorber plates of the

WHA.

2.5.3 The Plug Calorimeter

The plug calorimeter extends the calorimeter coverage down to 10o. As mentioned in

Section 2.5, the plug is a gas calorimeter, with the active medium being a mixture

of 50% argon, 50% ethane and a small amount of alcohol. The plug consists of two

identical calorimeters that are located in the ends of the solenoid, at z = � 173 cm.

Plug Electromagnetic Calorimeter

The two Plug Electromagnetic Calorimeters (PEM) [52] cover the regions 1:2 < �d <

2:4 and �2:4 < �d < �1:2, respectively. They are cylindrical in shape and are made

up of four 900 quadrants. The projective towers cover 50 in � and there are 16 towers

segmented in �d. The �rst tower, at j�dj = 2:4, is of size 0.09 in units of �d, the next

four towers are only half that size, and the remaining eleven towers are of size 0.09

again. The four smaller rows of towers were usually combined o�ine to form two
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standard sets of towers.

The PEM is a sandwich of lead and gas �lled proportional tube layers, arranged

in cylindrically symmetric volumes on either side of the interaction region. Four

quadrants share the same gas volume. Each proportional layer is constructed from

proportional tubes. Each proportional tube consists of gold plated tungsten wires,

centered in a resistive plastic tube, see Fig. 2.4a). The tubes have a cross section of

0.7 x 0.7 cm2 and span the length of a quadrant. Each plane of tubes is assembled

into a fan-shaped quadrant in azimuth, with the tubes arranged perpendicularly to

the beam. To construct a proportional layer, the planes were sandwiched by a pair

of 1.6mm-thick copper clad G-10 panels, as pictured in Fig. 2.4b). The wires are the

anodes and the copper clad panels are the cathodes. On one side of the panel, the

copper is subdivided into pads. Copper traces on the opposite side of that panel carry

the signal to the edge of the quadrant. Summing up the signals longitudinally yields

the tower signal. The longitudinal depth of the PEM is 34 proportional layers, each

1.2 cm thick, interleaved with 33 layers of 0.27 cm-thick lead. The front of the PEM

is covered with a 1.3 cm-thick steel plate, which acts as �rst absorber layer. Similarly,

the rear is covered with a 4.5 cm-thick steel plate, acting as the �rst absorber layer

of the Plug Hadronic Calorimeter.

All towers of the PEM were calibrated with a 100GeV electron beam. The energy

resolution for electrons in the range from 20 to 200GeV was measured to be �=ET =

28%=
p
ET � 2% and the response of the PEM was found to be linear (as a function

of the incident particle energy) within 3%.

Plug Hadronic Calorimeter

The Plug Hadronic Calorimeter (PHA) covers the region 1:2 < j�dj < 2:4. It is

arranged in twelve 300 sectors. The towers cover 0.09 units in �d and 50 in �.

The PHA is a sandwich of gas �lled proportional tube layers and steel. The construc-

tion of the proportional layers is similar to the PEM. Gold plated tungsten wires,
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a)

b)

Figure 2.4: The Plug Electromagnetic Calorimeter. a) Proportional tubes, plastic
anodes, and wire supports. b) Proportional layer. The plane of proportional tubes is
sandwiched by G-10 panels.

centered in resitive platic tubes with a cross section of 0.8 x 1.4 cm2, act as anodes.

The cathode planes consist of 72 electrically distict pads on the inner side, which are

connected to the outer side via a through hole. Copper traces on the outer side carry

the signals to the edge of the wedges, from where they are transmitted to front end

ampli�ers in the collision hall. The 20 proportional chambers are sandwiched with

21 steel plates, each 5.1 cm thick1.

The PHA sectors were calibrated with 200GeV pions. No deviation from linearity was

observed for the response to pions between 20 and 200GeV. The energy resolution

for pions in this energy range was measured to be �=ET = 90%=
p
ET � 4%.

1The plate after the fourth proportional layer has a thickness of 6.4 cm.
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2.5.4 The Forward / Backward Calorimeters

The Forward / Backward Calorimeters complete the coverage of the CDF calorime-

ters, extending the range to j�dj < 4:2. The two identical calorimeters are box shaped

and are located 6.5m from the interaction point in either z direction. In this study,

the Forward / Backward Calorimeters were used for the rejection of the background

only. The following description applies to the Forward Calorimeter. The Backward

calorimeter is located at the opposite side of the interaction region.

Foward Electromagnetic Calorimeter

The Foward Electromagnetic Calorimeter (FEM) covers the region 2:3 < �d < 4:2. It

is a sandwich of gas �lled proportional chambers and lead. It is azimuthally arranged

in four 90o quadrants. The projective towers cover 0.1 units in �d and 50 in �. There

are 19 divisions in �d. Thirty proportional layers are interleaved with layers of lead.

Pad signals are read out in two longitudinal depth segments. The FEM quadrants

were calibrated with electrons. The response was found to be linear for electrons

in the energy range 20 to 160GeV and the energy resolution was measured to be

�=ET = 25%=
p
ET � 2%.

Foward Hadronic Calorimeter

The Forward Hadronic Calorimeter (FHA) [53] covers the region 2:3 < �d < 4:2. Like

the FEM it is a sandwich of gas �lled proportional chambers and steel, azimuthally

arranged in four 90o quadrants. The 19 projective towers cover 0.1 units in �d and 50

in �. Twenty-seven proportional layers are sandwiched with 27 layers of steel. The

tube dimensions are 50% larger than the ones of the FEM and there is no longitudinal

depth segmentation. The FHA was calibrated with pion beams. The response was

found to be linear for pions from 40 to 200GeV and the pion energy resolution was

measured to be �=ET = 130%=
p
ET � 4%.
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2.5.5 Uninstrumented Regions in the Calorimeter

Mechanical constraints in the design of the calorimeter necessarily result in uninstru-

mented regions or cracks. Measured quantities, such as the transverse energies of jets,

have to be corrected for the e�ects of these cracks.

Of particular importance for this analysis are the two � cracks [54]. At � = 900 (at

z = 0) the CEM modules are bounded by 2.5 cm steel endplates that are separated

from the scintillator/absorber stack by a 1.6 cm support gap. The steel endplates of

the east and west modules that are joined at z = 0 are separated by an air gap of

about 0.5 cm. This crack will be referred to as the 90o crack. At � = 38o, the CEM

wedges are bounded by a 5.1 cm steel plate, separated from the stack by a 5.1 cm gap

that is occupied by the light guides. This is called the 30o crack. The e�ects of the

cracks on the jet energies will be discussed in Section 3.1.3.

2.6 The Muon Detection System

Compared to the electron, the muon has a much higher mass, resulting in a cross

section for losses due to radiation that is signi�cantly smaller. This ability of the

muon to penetrate matter motivates the location of the muon subsystems in the

outer region of the CDF detector. The material between the interaction region and

the muon detection system, primarily the calorimeters, �lters out the majority of

electrons and hadrons before they reach the muon detectors. There are two separate

systems to measure muons at CDF.

In the central region, the Central Muon Detector (CMU) [55] covers the region

j�dj < 0:65 and is located on the outer edge of the central hadronic calorimeter, 3.47m

from the beam axis. The CMU is made up of 12:6o wedges with four layers of rectan-

gular drift cells. The Central Muon Upgrade detector (CMP) [56], installed in 1992 to

reduce false muon background from hadrons that punch through the calorimeter, sur-

rounds the central region of the CDF detector with 630 t of additional steel. Its active
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planes consist of four layers of single-wire drift tubes. The Central Muon Extension

(CMX), consisting of 1536 proportional drift cells, provides additional pseudorapidity

acceptance in the region 0:65 < j�dj < 1.

The forward / backward muon system [57] consist of one spectrometer in both regions,

each containing two 1m-thick steel toroids with outer and inner diameters of 7.8m

and 0.9m, respectively. Four coils excite the toroid to a magnetic �eld ranging from

1.6T (inner radius) to 2.0T (outer radius). Three layers of drift chambers measure the

muon trajectory and two layers of scintillation counters provide trigger information.

The �d range covered by these spectrometers is 1:96 < j�dj < 3:64.

2.7 The Trigger and Data Acquisition Systems

During Run I, the Tevatron collider operated with a proton-antiproton bunch-crossing

time of 3.5�s, corresponding to a bunch-crossing frequency of 286 kHz. The maximum

rate at which CDF events could be written to tape was approximately 10Hz. This

necessitated a trigger system that was capable of handling the p�p interaction rate and

at the same time selecting interesting physics events with a reduction factor of almost

30 000 : 1. A system of three consecutive trigger levels [58] was used where each level

reduced the data rate transferred to the next-higher level, thereby providing time for

a more sophisticated analysis of the events.

Trigger Level 1 required less than the bunch crossing time of 3.5�s to pass on an event

to the next-higher level. It primarily used information from the calorimeters and the

muon systems. To use the calorimeter component of the Level 1 trigger, the calorime-

ters were logically segmented into 'trigger towers', covering ranges of �� = 150 and

��d = 0:2. To pass the Level 1 calorimeter trigger, an individual trigger tower was re-

quired to have an energy of 8GeV in the central electromagentic calorimeter, 11GeV

in the central hadronic calorimeter, 11GeV in the plug electromagnetic calorimeter

or 51GeV in either the plug hadronic or one of the forward calorimeters [59]. At
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an instantaneous luminosity of L = 5 � 1030cm�2s�1, the Level 1 acceptance rate was
approximately 1 kHz [47].

The Level 2 trigger required about 15�s to make a decision about a potential event.

With this increased processing time, simple calculations could be performed, essen-

tially using the same information as in Level 1. Level 2 performed transverse energy

clustering by applying 'seed' and 'shoulder' thresholds to all trigger towers. Seeds

were formed if a trigger tower exceeded an energy of 3GeV in any single electromag-

netic or hadronic calorimeter tower. A nearest-neighbour jet algorithm then searched

for energies of more than 1GeV in any of the four neighbouring towers. If so, the

tower was included in the cluster. This process continued until no more contiguous

towers were found. The energies of all towers were then summed to give the energy

of the cluster. The Run 1B data sample was collected with four jet triggers with

threshold energies of 20, 50, 70 and 100GeV, respectively. These triggers are referred

to as the Jet 20, 50, 70 and 100 triggers. The jet trigger required at least one jet

with a trigger Level 2 transverse energy that was greater than the ET threshold of the

respective trigger. Level 1 and 2 also required prescale factors for all but the Jet 100

jet trigger. The prescale factors are discussed in Section 3.2.4. At an instantenous

luminosity of L = 5 � 1030cm�2s�1, the Level 2 acceptance rate was approximately

12Hz [47].

The Level 3 trigger system [60] was a software-based 'computer farm' that was capable

of parallel processing of the events. The farm consisted of 64 commercially available

processors, manufactured by Silicon Graphics. Level 3 ran the same jet clustering

algorithm that was used in the o�ine analysis (see Section 3.1.1). It started by

�nding 1GeV seed towers and summed over all towers with an energy of greater

then 100MeV inside a cone of radius 0.7. When a potentially interesting event was

accepted by the Level 2 trigger, the data in the channels in the CDF detector were

digitized and read out by the data aquisition (DAQ) system and transferred to the

Level 3 processor farm. The Level 3 trigger reduced the event rate by a factor of two



42 CHAPTER 2. THE CDF DETECTOR AT THE TEVATRON COLLIDER

to three, depending on the instantaneous luminosity.

Events accepted by the Level 3 trigger were passed on to the 'consumer server',

a process running on a dedicated Silicon Graphics Challenge L computer. Several

'consumers' received data from the consumer server, running diagnostic applications

and providing the CDF control room with graphical information about the detector

performance. Data logger programs, running on the consumer server, wrote accepted

events to local disks. Subsequently, these data logger events were written to 8-mm

tapes by a tape-staging program.



Chapter 3

Measurement of the Dijet Mass

Cross Section

3.1 Jets and Jet Algorithms

One of the most striking feature of events with hadrons in the �nal state is the ap-

pearance of jets of particles. The study of jets provides an intuitive approach to the

analysis of such events. However, a quantitative analysis of jets requires an exact jet

de�nition to determine which particles should be combined into a jet and a suitable

algorithm has to be applied to each event. This algorithm generally contains one free

parameter and a scheme for recombining the particles. Di�erent jet algorithms lead

to di�erent numbers of jets being observed in any given event and as a result, jet

cross sections depend on the procedure used to de�ne a jet. Nevertheless, for each jet

algorithm any given event contains a precisely de�ned number of jets. The jet algo-

rithm must be applicable to both the observed data and the theoretical calculations,

in order to compare the two.

The two main classes of jet �nding routines are cluster and cone algorithms. Whereas

cluster algorithms, like the JADE [61] or the kT algorithm [62], assign every particle

43
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in an event to one of the jets, cone algorithms assign particles to jets only if they are

within a certain spatial distance of the jet axis and leave some particles unclustered.

Because of this feature cluster algorithms are used primarily in in e+e� collisions,

where there is no initial state radiation and no underlying event, whose contributions

could wrongly be added to the energies associated with the jets from the primary in-

teraction. Most analyses of jets in p�p interactions, including the present one, use cone

algorithms. The jet �nding procedure according to the cone algorithm is explained

in the following section.

Figure 3.1 shows a typical dijet event at CDF. A lego plot of the energy deposited in

the calorimeter is shown in Fig. 3.1a). The two jets are back-to-back in azimuth and

they balance the transverse energy of the event. The energy shown in this �gure is

divided into electromagnetic energy (light grey) and hadronic energy (dark grey). A

side view of the same event, Fig. 3.1b), shows the reconstructed tracks of the particles

and the energy deposited in the calorimeter. The event momentum is balanced by

the remnants of the proton and the antiproton that are not observed in the detector

in this event.

3.1.1 Jet De�nition in the Cone Algorithm

In the cone algorithm used in this analysis [63], jets are de�ned by the energies and

scattering angles of the particles in an event. Our jet �nding routine, JETCLU [64],

de�ned a cluster by the energy contained within a circle in � � � space. This circle

has the radius

R =
q
�2 + �2; (3.1)

where � is measured in radians. We refer to R as the cone size. A cone size of 0.7 was

chosen for this analysis. The choice of R = 0:7 is based partly on the distribution of

energy 
ow with respect to the jet axis. It has been shown that cone size as small

as 0.4 or as large as 1.0 yield good resolution [63, 65]. In this context, the choice of
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Figure 3.1: A typical dijet event at CDF. a) Lego plot of the energy deposited in the
calorimeter. b) Side view of the same event.
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R = 0:7 falls in the middle of a sensible range. It is important, however, that the

QCD calculations used for comparisons re
ect the size of the cone.

The basic unit of the JETCLU algorithm is a calorimeter tower. The total transverse

energy in each tower was taken as the sum of the transverse electromagnetic energy

and the transverse hadronic energy. The transverse electromagnetic energy in each

tower was de�ned as the electromagnetic tower energy times sin �EM , where �EM was

determined by the z axis, the event z vertex and a point at the � center of the tower,

ten radiation lengths from the event vertex [54]. The transverse hadronic energy

was de�ned similarly, using a point at the � of the hadronic calorimeter tower, three

interaction lengths from the event vertex.

The JETCLU algorithm started by �nding seed towers, de�ned as towers containing a

transverse energy of more than 1GeV. Next, adjacent seed towers were combined to

form preclusters. Adjacent seed towers in a precluster were required to have mono-

tonically decreasing transverse energies and each precluster had to have a transverse

energy of at least 2GeV. The ET -weighted centroids of all preclusters were then cal-

culated. Clusters were formed by including all candidate towers within a circle with

radius R = 0:7 around the centroid. A candidate tower was required to have a trans-

verse energy of more than 0.1GeV. The cluster centroid was re-calculated and only

candidate towers within the new circle were included in the new cluster. Seed towers

were kept in the cluster, regardless of whether or not they fell into the new circle.

Since, at this stage, each cluster was formed without regard to the possible presence of

other clusters, towers could be included in more than one cluster. In order to decide

to which cluster a disputed tower should be assigned, the fraction of the shared

energy was calculated for each pair of clusters. Two clusters were merged if the total

transverse energy of all disputed towers was more than 75% of the transverse energy

of either cluster. Otherwise the clusters were separated and each disputed tower was

assigned to the closer cluster. The centroids of all clusters were recalculated and the

this process was iterated until the list of towers assigned to the clusters no longer
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changed. This procedure typically converged after the �rst iteration. Figure 3.2

shows a 
ow diagram of the JETCLU algorithm.

Figure 3.2: Flow diagram of the JETCLU algorithm.

3.1.2 Jet 4-Vectors

From the energies in the calorimeter towers and the list of towers assigned to the jets,

the following quantities were determined for each jet:

� The energy

E =
X
i

Ei
EM + Ei

HAD; (3.2)

with EEM and EHAD, the electromagnetic and hadronic energy of the jet, re-

spectively. The sum runs over all calorimeter towers that were assigned to the
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jet,

� the 3-momentum

px =
X
i

(Ei
EM sin �iEM + Ei

HAD sin �iHAD) cos�
i (3.3)

py =
X
i

(Ei
EM sin �iEM + Ei

HAD sin �iHAD) sin�
i (3.4)

pz =
X
i

Ei
EM cos �iEM + Ei

HAD cos �iHAD; (3.5)

with the polar and azimuthal angles of the towers, �i and �i,

� the total momentum

p =
q
p2x + p2y + p2z; (3.6)

� the polar angle

� = cos�1
 
pz
p

!
; (3.7)

� the transverse energy

ET = E sin �; (3.8)

� and the pseudorapidity

� = � ln

 
tan

�

2

!
: (3.9)

3.1.3 Jet Energy Corrections

In general, the measured energy of a jet in the detector is di�erent from its true energy.

This is due to a variety of calorimeter response e�ects. The non-uniform nature of

the calorimeter, e.g. due to the presence of crack regions, leads to a signi�cant

variation in the detector response as a function of �d. Furthermore, the calorimeter

exhibited a slight energy non-linearity for very low-energy particles, which resulted

in a fragmentation-dependent jet energy measurement. Finally, underlying event

particles increased the e�ective energy found in the jet cones. To correct the data for
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these e�ects, jet energy corrections were applied. These corrections for calorimeter

response should not be confused with the unsmearing corrections discussed in Chapter

4.

The jet energy corrections were applied in two stages, the relative and the absolute

energy scale corrections. The relative energy scale is a measure of the response of the

non-central regions of the detector, relative to the central region. This relative correc-

tion was used to transform the transverse momentum of a given jet into the transverse

momentum that would have been measured, had that jet been detected in the cen-

tral region. This was necessary to compensate for calibration mismatches between

the di�erent regions of the detector. Next, the absolute jet corrections were applied,

which yielded the corrected jet energy. The jet energy corrections are described in

detail in [66].

We did not correct the data for jet clustering e�ects since the theoretical calculations

are performed for quarks and gluons inside the jet cones. Particles that are radiated

outside the jet clustering cone, e.g. an extra gluon, lead to similar losses in the the-

oretical calculations and the data. The energy corrections increased the jet energies,

on average, by 20% (16%) for uncorrected jet energies of 100GeV (400GeV).

3.2 The Data Sample

This analysis is based on data collected during the 1994-95 Tevatron running period,

also called Run 1B, when an integrated luminosity of 86.3�3.5 pb�1 was recorded.

The mean instantaneous luminosity delivered to the CDF experiment during Run

1B was 8.0 �1030cm�2s�1 with peak instantaneous luminosities of 2.6 �1031 cm�2s�1

[43]. The integrated luminosity of our data sample was measured to be 85.9 pb�1 by

summing up the luminosities of all runs that were used for the analysis.
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3.2.1 Event Selection

During Run 1B, given a total p�p cross section of about 80mb [29], the CDF detector

was spectator to roughly 7 � 1012 proton-antiproton collisions. For this analysis only

physics events in a selected kinematical range, with two or more jets, were of interest.

We selected these from the bulk of events that were irrelevant for this analysis. Since

our analysis does not involve any of the muon detection systems, we selected runs

that were good for non-muon analyses. Background events were removed by applying

the following selection criteria:

� Events containing large amounts of hadronic energy in the calorimeter that was

out-of-time with the proton-antiproton beam crossing were removed by using

timing signals from TDC's on the central and endwall hadron calorimeters.

These out-of-time events could stem from cosmic rays, beam-gas interactions

or accelerator losses (splashes) from the Main Ring. Events where one or more

photomultiplier tubes gave unphysically large signals, due to high voltage dis-

charges (spikes) were also removed by this requirement.

� When a cosmic ray traverses the detector, the resulting signature contains a

large amount of missing transverse energy, 6ET , de�ned to be the vector sum of

all transverse energy in an event. The missing-ET signi�cance [67]

S6ET
=

6ETpP
ET

(3.10)

is a measure for the relative imbalance of ET in the detector. To reject cosmic

ray events we required S6ET
to be less than 6

p
GeV and the total energy,

P
E,

to be less than 2TeV.

� We required the absolute z component of the vertex to be less than 60 cm, in

order to ensure that the events were fully contained in the calorimeter and to

preserve the projective geometry of the calorimeter towers. The vertex was

determined by using the information from the tracking chambers, mostly the
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VTX.

� Finally, we required at least two jets in each event.

We de�ned the dijet system according to Eqn. (1.15) and applied the following kine-

matical selection criteria, based on the corrected jet quantities, to our data sample:

� We required the physics pseudorapidity of the two leading jets to satisfy j�1j <
2:0 and j�2j < 2:0. If either of the two highest-ET jets was detected in the

region j�j > 2:0 we discarded the event. This requirement excluded events with

jets that were mainly in the forward / backward calorimeters.

� The jet triggers were based on the transverse energy of the events and, since the

transverse energy is a steeply falling spectrum, the trigger e�ciencies strongly

depended on the jet ET . Figure 3.3 shows the dijet system schematically.

Figure 3.3: Schematic view of the dijet mass system.

To lowest order (2 jets only) and in the zero-mass approximation, the two jets

have equal energies and are scattered back-to-back. Their scattering angle, ��,

is given by

sin �� =
ET

E
=

2ET

Mjj

: (3.11)

The second equality follows from the de�nition of the dijet mass (Eqn. (1.15))

and ~p1 = �~p2. Events with higher values of sin ��, corresponding to lower values
of cos ��, were therefore selected with a higher probability. To ensure a high
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trigger e�ciency over the whole selected dijet mass range, we required the dijet

system to satisfy j cos ��j � tanh(��) < 2=3, with �� = 1
2
(�1 � �2).

These criteria selected 61 002 events for the analysis.

The pseudorapidity cut and the cos �� cut de�ned our data sample. We did not correct

for the acceptance of these two cuts. Instead, we will include these two cuts in the

theory calculations of the dijet mass cross section.

3.2.2 Trigger E�ciencies

We selected events that were in a kinematical range with high trigger e�ciencies to

avoid large systematic uncertainties that are associated with low trigger e�ciencies.

We measured the e�ciency of the Run 1B jet triggers by looking at the next-lower

threshold jet triggers and asking how often did the highest-ET Level 2 cluster pass

the lower Level 2 ET threshold. For example, in order to measure the e�ciency of

the Jet 70 trigger, we used the Jet 50 trigger sample and measured a) the rate as a

function of corrected dijet mass and b) the same rate with the additional requirement

that the Level 2 ET was greater than 70GeV. The ratio of the latter number divided

by the former was the e�ciency of the Level 2 Jet 70 trigger. The Level 3 triggers

cut less stringently on energy than Level 2 and was thus fully e�cient for events that

passed the Level 2 trigger.

The e�ciencies of the three lowest jet triggers, as a function of the corrected dijet

mass, are shown in Fig. 3.4. We used data from the triggers beginning at the mass

marked with a dotted line and ending where the next trigger begins.

For the Jet 20 trigger we had no lower threshold trigger to measure the e�ciency.

Instead, we estimated the dijet mass where the Jet 20 trigger would start to be fully

e�cient. Figure 3.5 shows the mass thresholds that correspond to full e�ciency of

the Jet 50, 70 and 100 triggers. The solid line is an extrapolation down to the Jet 20

trigger. To ensure full e�ciency of the Jet 20 trigger, we chose a mass threshold of
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Figure 3.4: The Run 1B trigger e�ciencies for the Jet 100 trigger (top), Jet 70 trigger
(middle) and Jet 50 trigger (bottom) as a function of the dijet mass. The solid lines
are smooth �ts. Indicated are the mass cuts for this analysis (dashed lines) and the
e�ciencies at threshold. The horizontal bars indicate the widths of the dijet mass
bins.



54 CHAPTER 3. MEASUREMENT OF THE DIJET MASS CROSS SECTION

Mjj > 180GeV/c2, as indicated by the open circle.

Figure 3.5: Mass thresholds corresponding to full e�ciency of the jet triggers. The
measured thresholds of the Jet 50, 70 and 100 triggers are indicated by the full circles.
The solid line is an extrapolation to the Jet 20 trigger. We chose a mass threshold of
Mjj > 180GeV/c2, as indicated by the open circle.

3.2.3 z-Vertex Cut E�ciency

Figure 3.6 shows the z-vertex cut e�ciency for the individual dijet mass bins. To

account for the slightly decreasing value of the e�ciency at low dijet masses, we used

a linear parameterization that increases from 92.5% for the lowest mass bin to 94.2%

for the mass bin starting at 388GeV/c2. Above a dijet mass of 388GeV/c2 we used

a constant value of 94.2%. The solid line indicates the values used in this analysis.

The data have been corrected for the z-vertex cut e�ciency.

3.2.4 Jet Trigger Prescale Factors

The Run 1B data sample was collected with four jet triggers with threshold energies

of 20, 50, 70 and 100GeV, respectively. The three lowest jet triggers were prescaled
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Figure 3.6: The z-vertex cut e�ciencies for the individual dijet mass bins. The values
we used in this analysis are indicated by the solid line.

to limit statistics for more common event signatures. The prescaling was done on the

�rst two trigger levels. Level 1 required the Jet 20 and 50 triggers to pass the prescale

40 trigger, which randomly passes on one out of every 40 events to the next-higher

trigger level. Similarly, Level 2 involved a prescale 25 trigger for the Jet 20's and a

prescale 8 trigger for the Jet 70's.

We measured the prescale factors of the jet triggers by comparing the dijet mass cross

sections in the overlap region between adjacent jet triggers. Using the Jet 100 trigger

(which is not prescaled) as our reference sample, we �rst measured the prescale factor

of the Jet 70 sample. Next we determined the prescale factor of the Jet 50 sample,

relative to the Jet 70 sample and �nally the prescale factor of the Jet 20 sample with

respect to the Jet 50 sample. Table 3.1 lists our measured values with their statistical

uncertainties and the nominal prescale factors.

Whereas the prescale factors of the Jet 20 and Jet 70 triggers are in agreement with

their nominal values, the prescale factor for the Jet 50 sample is lower than its nominal

value. Since the Jet 50 trigger is the only one that was prescaled exclusively by the

Level 1 trigger, this is an indication of a problem with the Level 1 prescale factor.
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Level 2 Triggers Measured Prescale Factor Nominal Value

Jet 70 / Jet 100 8:03� 0:15 8

Jet 50 / Jet 70 4:81� 0:08 5

Jet 20 / Jet 50 24:6� 0:8 25

Table 3.1: Measured and nominal values for prescale factors of the jet trigger bits.

Although we did not see similar problems with the the Level 2 trigger, which prescales

the Jet 70 and the Jet 20 triggers, we decided to use our measured values for all three

jet triggers. Our values agree well with the ones from the inclusive jet-ET analysis

[68] of 24.66 and 'exactly 8' for the Jet 20 and the Jet 70 sample, respectively. No

measured value for the Jet 50 trigger is given in [68]. The trigger e�ciencies at

threshold and the total prescale factors are listed in Table 3.2.

Level 2 Trigger Mass Cut E�ciency Prescale Factor

(GeV/c2)

Jet 20 180 1.00 949

Jet 50 217 0.97 38.6

Jet 70 292 0.98 8.03

Jet 100 388 0.97 1.00

Table 3.2: Level 2 triggers, mass cuts, e�ciencies at threshold and prescale factors.

3.2.5 Properties of the Data Sample

Figures 3.7 and 3.8 show the distributions of some of the kinematic and angular

variables of our data sample. The distributions are compared to the ones of the Monte

Carlo sample. The Monte Carlo events were generated with the Pythia Monte Carlo

program [69]. Because of the di�erent prescale factors of the three jet triggers, we
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chose not to plot the distributions of the complete sample. All distributions shown are

for the events that passed the Jet 100 trigger, after the application of all selection cuts,

including the kinematical cuts. Since the comparisons are for illustrative purposes

only, the number of entries in each histograms for both the data and the Monte Carlo

events were normalized to one.

The pT distributions, shown in Fig.3.7a) and b), turn on steeply at low transverse

momenta and then approximately fall with dN=dpT � 1=p6T . This rapid fall-o� is

the result of many factors: the decrease of the parton distribution functions with

increasing x, the fall-o� of the subprocess cross section proportional to 1=ŝ and, to a

lesser degree, the slight decrease of �s with increasing Q
2. The dijet mass distribution

is plotted in Fig. 3.7c). The Monte Carlo distribution reproduces the shape of the

data well. The cos �� distribution (Fig. 3.7d)) is symmetrical around zero and peaks

at values of � 1, corresponding to the poles of 2! 2 Rutherford scattering.

Figure 3.8 shows the �d and � distributions of the two leading jets. As expected, the

�d distributions are symmetrical around zero. The slightly coarse structure between

�d = 0 and �0:2 re
ect the imperfect jet energy corrections in the region of the

900 crack that is not completely modeled. The � distributions are 
at across the

whole range of 2� and are consistent with the expectation of azimuthally symmetric

distributions.

A scatter plot of the � values of the �rst two jets is shown in Fig. 3.9. To leading

order, all jets are back-to-back in �. However, higher-order radiation e�ects, result-

ing in three or more jets in the �nal state, cause deviations from the leading order

expectation.

3.3 The Dijet Mass Distribution

Figure 3.10 shows the partially corrected dijet di�erential cross section as a function

of the dijet mass. Over the kinematical range of the selected events the cross section
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Figure 3.7: Comparison of kinematic variables of our data set (full circles) and the
Monte Carlo events (histograms). a) and b) the transverse momenta of the two
highest-energy jets, c) the dijet invariant mass and d) cos ��. The number of entries
for both the data and the Monte Carlo events were normalized to one.
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Figure 3.8: Comparison of the angular variables of the two highest-energy jets. a)
and b) detector �, c) and d) the azimuthal angle, �. The number of entries for both
the data and the Monte Carlo events were normalized to one.
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Figure 3.9: Scatter plot of the � distributions of the two leading jets.

falls by six orders of magnitude. Here the data are corrected for trigger e�ciencies, z

vertex cut e�ciency, and calorimeter response, but are not yet corrected for detector

resolution e�ects. The error bars represent the statistical uncertainties in bins of dijet

mass. The bins are approximately 10% wide, re
ecting the resolution of the detector.

Throughout this analysis we use the functional form

f(m) =
A(1� mp

s
+ Cm2

s
)N

mP
; (3.12)

to parameterize the dijet mass distribution. The parameters A;C;N and P are deter-

mined by a �t to the data. The term in parentheses imitates the parton distribution

fall-o� at high x � m=
p
s and the term 1=mP models the drop-o� of the matrix

element with m. In order to ensure that Eqn. (3.12) is an appropriate description of

the dijet mass spectrum, we show the fractional di�erences between the data and this

parameterization in Fig. 3.11.
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Figure 3.10: The partially corrected di�erential dijet mass cross section. The data
have not yet been corrected for detector resolution e�ects. The vertical bars represent
the statistical errors and the horizontal bars represent the widths of the dijet mass
bins. The solid line is a �t of a parameterization to the data.
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Figure 3.11: Fractional di�erences between the partially corrected data and the pa-
rameterization.

The �t to the data returned the following values for the parameters: A = 6:67 � 1017,
C = 2:95, N = �6:98 and P = 6:70. The �2 of this �t was 21.0 / 14DOF or

1.50 /DOF. We also used this functional form to parameterize the true and mea-

sured distributions in both the analytical unsmearing procedure and the Monte Carlo

method (see below).



Chapter 4

The Unsmearing Procedure

4.1 Calorimetry

Conceptually, a calorimeter is a block of matter that intercepts the primary particle

and causes it to interact and to deposit all its energy in the subsequent cascade or

shower of increasingly lower-energy particles. Eventually, all the incident energy is

deposited and some fraction of it is detected in the form of scintillation light (or, in

the case of gas calorimeters, in form of ionization charge), which is proportional to

the incident particle energy.

Calorimeters o�er many attractive capabilities, among them:

1. They are sensitive to neutral and charged particles;

2. their di�erent responses to muons, electrons and hadrons can be exploited for

particle identi�cation;

3. segmented calorimeters provide information on the shower development, allow-

ing precise measurements of the positions and angles of the incident particles;

4. while the size of electromagnetic spectrometers scales with the momentum, p,

as
p
p, the length of calorimeters scales only logarithmically with the particle

63
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energy, making calorimeters the more compact and more economical device to

measure particle energies at collider experiments;

5. the fast time response of scintillator-based calorimeters allows operation at high

particle rates.

In the following sections electromagnetic and hadronic shower developments are dis-

cussed.

4.1.1 Electromagnetic Showers

The principal energy loss mechanisms for electrons (and positrons) are ionization

loss and radiation loss or bremsstrahlung. While the rate of ionization loss for fast

electrons is approximately constant, the average radiation loss is roughly proportional

to the electron energy. Radiation is therefore the dominant source of energy loss for

high-energy electrons. The critical energy, Ec, at which the two rates are equal is

approximately given by [40]

Ec � 600

Z
MeV (Z � 6); (4.1)

where Z is the atomic number.

When discussing electromagnetic showers, it is useful to introduce a quantity called

the radiation length, X0. One radiation length is the distance over which the incident

electron energy, E0, is reduced by a factor of 1=e due to radiation losses only. In the

high-energy limit, where processes other than radiation loss can be ignored and where

the rate of radiation loss is independent of the electron energy, the particle energy

can be expressed as [70]

E(x) = E0 exp
��x
X0

�
; (4.2)

where x is the distance traveled.

There are three processes responsible for the attenuation of 
-rays in matter: photo-
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electric absorption, Compton scattering and e+e� pair production. For photons with

energies of a few MeV or more, the process of pair production is the the dominant

source of energy loss. The attenuation of a beam of high-energy photons of intensity

I0 by pair production is given by [40]

I(x) = I0 exp
��7x
9X0

�
; (4.3)

so that the intensity is reduced by a factor 1=e after a distance of 9/7 of a radiation

length.

For high-energy electrons and photons, the result of the combined phenomena of

bremsstrahlung and pair production is the occurrence of showers. The development of

an electromagnetic shower can be discussed according to the following very simpli�ed

model. A parent electron of incident energy E0, in traversing one radiation length,

radiates half its energy as one photon. Within the next radiation length the photon

converts to an e+e� pair, transferring half its energy to the electron and positron each,

while the original electron radiates o� another photon. Thus, after two radiation

lengths, a single electron of energy E0 is replaced by two electrons, one positron and

one photon, each particle carrying the energy E0=4. After t radiation lengths, the

number of particles produced will be N = 2t, with roughly equal number of electrons,

positrons and photons, all with the energy E(t) = E0=2
t. The shower development

continues until the energy per particle becomes equal to the critical energy Ec, at

which point ionization losses become important and no further radiation occurs. Thus

the shower reaches a maximum and then ceases abruptly. The shower maximum

occurs at

tmax =
ln(E0=Ec)

ln 2
(4.4)

and the maximum number of particles produced is given by

Nmax = 2tmax =
E0

Ec

: (4.5)
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In a more realistic model, the shower development consists of an initial geometric

rise, followed by a broad maximum and a gradual decline. The characteristic shape

of electromagnetic showers can be parameterized according to [71]

dE=dt = N � t�e��t; (4.6)

where � and b are energy dependent parameters and N is the normalization factor,

given by

N = E0 � ��+1 =� (�+ 1): (4.7)

A rigorous analytical description of the longitudinal electromagnetic shower pro�le

can be found in [72].

The two parameters � and � determine the longitudinal shape of an electromagnetic

shower. Figure 4.1 shows the typical longitudinal shower shape. The start of the

shower and the steepness of the rising part of the curve are controlled by �, whereas

the steepness of the fall-o� and the length of the tail of the curve are determined by

�.

Figure 4.1: The longitudinal shape of an electromagnetic shower.

It is clear from this qualitative discussion of electromagnetic showers that the shower

development, the production of secondary and tertiary particles, is a stochastic pro-
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cess. The signal that is detected in a calorimeter depends on the actual number

of particles produced, which varies from case to case. In other words, particles of

the same type and of identical energies and incident angles produce signals that are

distributed according to a Gaussian probability distribution. In general, the dis-

tribution gets narrower with increasing particle energies because particles of higher

energies produces greater numbers of secondary particles. Since the number of sec-

ondary particles is proportional to the energy of the incident particle, the resolution

of a calorimeter improves with
p
E0.

As an illustrative example, Fig. 4.2 shows the electromagnetic response of a GEANT-

based [73] Monte Carlo simulation of the CDF Plug Upgrade Calorimeter to positrons

[74]. The Plug Upgrade calorimeter will replace the existing Plug Calorimeter for the

Tevatron Run 2 [75], scheduled to start in April 2000. Figure 4.2a) and b) show

the values of E=p, where E is the energy detected in the calorimeter simulation and

p is the momentum of the simulated particles, for two di�erent momenta, 11 and

150GeV/c. Fits to the calorimeter responses are indicated to show that they follow

a Gaussian distribution. The detector resolution, shown in Fig. 4.2c), improves with
p
E, as indicated by the solid line.

4.1.2 Hadronic Showers

Conceptually, the development of hadronic showers is the same as that of electro-

magnetic showers. However, the much greater variety and complexity of hadronic

processes complicate its detailed understanding and no straightforward analytical

description of hadronic processes is available. Nonetheless, the elementary physical

processes that cause the propagation of hadronic showers are empirically studied.

A hadronic particle loses energy mainly via the process of ionization until it interacts

strongly with a nucleus in the absorber material. In a hadronic interaction about half

the incident hadron energy is passed on to additional fast secondary particles. The

remainder is consumed in multi-particle production of slow pions and other processes.
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Figure 4.2: The response of a detector Monte Carlo simulation to positrons. a) and
b) The values of E=p, where E is the energy detected and p is the momentum of the
incident particles, for p = 11GeV/c and p = 150GeV/c. The solid lines represent
Gaussian �ts to the histograms. c) The resolution of the simulation as a function of
the incident positron energy.
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A typical secondary hadron is produced with a transverse momentum of 0.35GeV/c

[71]. As a result, hadronic showers are usually more spread out laterally than their

electromagnetic counterparts.

Most of the energy is dissipated by ionization losses of secondary particles [76]. The

next-largest sources of energy loss, the production of �0's from nuclear interactions

and the breakup of nuclei, are also responsible for the physics limitations to the energy

resolution of hadronic calorimeters.

1. A considerable number of the secondary particles are �0's that immediately

decay into two photons and thus give rise to electromagnetic showers inside

a hadronic one. The average fraction of energy converted into �0's is given

approximately by 0:1 lnE(GeV) for energies in the range of a few hundred

GeV [71], typical of the jets in this measurement.

2. In a hadronic cascade roughly 30% of the incident energy is lost through pro-

cesses that do not produce detectable signals, e.g. the breakup of nuclei or

nuclear excitation [40]. One successful method of compensating for this e�ect is

the use of 238U as absorber material. The extra energy released by fast neutron

and photon �ssion of 238U makes up for the undetectable energy from nuclear

breakups.

These two (correlated) processes lead, for a given hadron, to large 
uctuations in the

shower composition and very di�erent detectable calorimeter responses. Together,

they impose the intrinsic limitation on the performance of hadronic calorimeters,

resulting in generally considerably poorer energy resolutions than for electromagnetic

calorimeters.

In conclusion, the response of a calorimeter to a particle (or jet) of given energy is

intrinsicly limited by statistical 
uctuations, resulting in a �nite energy resolution of

the detector. In the following section we explain how this leads to a smearing of the

measured dijet mass cross section.
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4.2 Jet Energy Smearing

The detector responds to jets of a given energy with a Gaussian-like distribution,

rather than with a �-function distribution. This leads to a smearing of the true jet

energies and a shift of the measured di�erential dijet mass cross section, see Fig. 4.3.

Figure 4.3: The �nite detector resolution leads to a smearing of the true di�erential
cross section. The observed distribution (the data) is shifted with respect to the true
distribution.

The actual shape and magnitude of this shift depends on the detector resolution and

the shape of the true distribution. In order to compare the data with predictions

from QCD calculations, the data are corrected for these e�ects.

The observed spectrum can be described as a convolution of the true spectrum and

the detector resolution function:

d�bin

dMjj

=

R bin dmmeas

bin width

Z 1
0

R(mmeas; mtrue; X)T (mtrue; A; C;N; P ) dmtrue; (4.8)

where d�bin

dMjj
is the cross section measured in a dijet mass bin. The detector response

function, R, is dependent on the measured dijet mass, mmeas, the true dijet mass,

mtrue, and a set of parameters, X. The parameterized true spectrum, T , is dependent

on the true mass and the four parameters A, C, N and P .
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The integration over the true mass takes into account the contributions to the cross

section in a certain data bin from all true dijet masses. In principle, this integration

should be performed from 0 to 1. Practically, a lower limit must be imposed on

the integration because the parameterization of the true spectrum we use increases

without bound at low dijet masses. In this analysis the lower limit of integration has

been set to 50GeV/c2. The result of the integration did not change if this limit was

lowered any further.

The integration over the measured mass takes into account the fact that the events

are distributed over the whole bin and are not con�ned to the center of the bin. It

was performed over the respective data bins and the result was divided by the width

of the bin.

In order to deconvolute the data we applied the following procedure.

1. We parameterized the detector resolution and the true spectrum. The parame-

terization of the detector response is described in Section 4.6. The true spectrum

was parameterized with the 4-parameter function of Eqn. (3.12).

2. By minimizing the �2 between the values of the convolution integral and the

data in the 18 bins, we found the values of the parameters of the true spectrum.

This was done using the �t program Minuit [77].

3. For this particular choice of parameters we then calculated the values of the true

spectrum and the corresponding values of the smeared spectrum S (the values

of the convolution integral). Ideally, the smeared spectrum should reproduce

the data perfectly.

4. We de�ned the correction factor, K, by

K(mmeas) =
S(mmeas)

T (mmeas)
(4.9)

and divide the data by K in order to get the unsmeared, fully corrected values
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of the dijet mass distribution

corrected data (mmeas) =
data (mmeas)

K(mmeas)
: (4.10)

In the following, we distinguish between the true and the measured dijet mass. Before

we proceed with parameterizing the detector resolution function, we explain how the

true and the measured distributions were de�ned.

4.3 True and Measured Dijet Masses

In order to relate the true and measured dijet masses to obtain R from Eqn. (4.8),

we generated Monte Carlo events with the Pythia Monte Carlo program and, using

a cone size of 0.7, clustered all �nal state particles into jets. The true dijet mass was

then de�ned as the mass of all particles in the two leading jet cones, see Fig. 4.4a).

Note that this was done at the parton level, before the detector simulation was applied.

The measured dijet mass was de�ned as the mass of the same two jet cones after the

detector simulation program, QFL1, was applied, see Fig. 4.4b).

4.4 True Level Clustering Routines

The handling of the true level clustering is crucial to this analysis since it a�ects the

result of the unsmearing procedure as well as that of the internal consistency check. To

ensure that this was done correctly, we have used two independent routines, Pyttow

and Trueclus. The two routines take independent approaches to perform the true

level clustering.

1QFL is a detector simulation which uses parameterized detector responses instead of deriving
them from detailed models, thus saving considerable CPU time.
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Figure 4.4: De�nitions of the true and measured dijet masses: a) The true dijet mass
is de�ned as the invariant mass of all �nal state Pythia particles in the two leading
jet cones. b) The measured dijet mass is the mass of the same jet cones after the
detector simulation.

Pyttow uses the generator level particle information from Pythia to create data

banks, on which the standard jet algorithm (JETCLU), can then be applied. The

Pyttow routine is part of the standard CDF o�ine software and has been used in

previous analyses [13].

Trueclus was written speci�cally for this study. It was modeled after the JETCLU

algorithm. Whereas JETCLU operates on calorimeter cells as input, Trueclus takes

the Pythia 4-vectors as input and clusters them directly. Trueclus �nds seeds,

forms preclusters and merges jets in an iterative procedure, equivalent to the one in

JETCLU.

Figure 4.5 shows a comparison of results from Trueclus and Pyttow. The values

of � and � from both routines are compared for the highest-pT jet in each event

(Figs. 4.5a) and b)). Figures 4.5c) and d) show the fractional di�erences between the

jet pT of the two routines for two highest-pT jets.

The jets in these �gures are unmatched. For example, in Fig. 4.5a) the � of the
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Figure 4.5: Comparison between the two true level clustering routines, Trueclus
and Pyttow. a) Detector � of jet 1 as measured by Pyttow and Trueclus (x
and y-axis, respectively). b) The same for �. c) and d) Fractional di�erences of the
jet pT for jet 1 and 2, respectively.

jet with the highest pT in Trueclus is compared with the � of the highest-pT jet

in Pyttow. The fact that there was not necessarily a one-to-one correspondence

between the jets can be seen in Fig. 4.5b): The bands above and below the central

band correspond to events in which the two highest-energy jets were swapped between

the routines. This happened in less than 10% of the events. It should be noted that

the de�nition of the dijet mass does not depend on the pT -order of the two highest

jets. In less than 1% of the events a third jet in one routine was assigned as one of the
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two highest jets in the other routine. Figures 4.5c) and d) show that the two routines

are in good agreement, with the average di�erence in pT being less than 1% for the

two highest-pT jets. For the remainder of this analysis we used Pyttow for the true

level clustering, because it was computationally faster than Trueclus. Remaining

di�erences between the two routines have no signi�cant impact on the analysis, since

we required the true-level jet pT , on average, to reproduce the measured-level jet pT

(see below).

4.5 QFL Energy Scale Corrections

Before parameterizing the detector resolution function and performing the unsmear-

ing, we ensured that the absolute energy scale in QFL was set correctly. The jet

corrections were originally obtained with a version of QFL that is much older than

the version used in this analysis2. The original version of QFL was checked exten-

sively to ensure that it agreed with CDF test beam data and in situ calibration data.

There have been many changes to the o�ine package and to QFL since these checks

were done. It was therefore not necessarily true that the jet corrections were still valid

for our version of QFL. In the past, a discrepancy between the true and measured

level jet energies has been observed at least twice [13, 78], indicating that the QFL

jet corrections were not up-to-date.

In order to re-establish the QFL energy scale, we repeated the study [66] that deter-

mined the jet energy corrections in the �rst place. Following this work, we used the

Pythia program to generate a spectrum that was 
at in the generated pT of the jets.

We then performed the jet clustering on the true and measured levels and plotted

the fractional di�erences between the true and the measured jet pT in 10GeV-wide

bins of measured jet pT . This was done for the region of the Central Calorimeter only

(0:2 < j�j < 0:7). Single Gaussian functions were then �t to these histograms and the

2We used QFL version 3.59.
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jet corrections were obtained by parameterizing the mean values of these Gaussians

as a function of the measured jet pT .

Our results are shown in Fig. 4.6 for six selected bins of measured jet pT . In this

�gure true and measured jets are matched, as was done in [66]. The single Gaus-

sian functions only describe parts of the distributions. However, this is what was

done originally and our objective was to duplicate the original analysis, despite its

limitations, to update the absolute energy scale of QFL.

The mean values of the single Gaussians as a function of the measured jet pT and

a third-order polynomial �t to these values are displayed in Fig. 4.7. It can be seen

that the measured jet pT is lower than its true counterpart by between 4% and 2%,

depending on the jet pT . In order to re-set the QFL energy scale, we added the

amount indicated by the �t to each of the components of the measured 4-vectors of

the jets. It should be stressed that this additional correction was applied to the jets

in the Monte Carlo sample only; the data jets were not a�ected.

4.6 Parameterization of the Detector Response

In order to �nd a parameterization of the detector resolution function we generated

several PythiaMonte Carlo samples. To obtain the detector response for a particular

true dijet mass, we selected events with true dijet masses (Pyttow) within 0.5% of

the nominal mass, applied the detector simulation (QFL + JETCLU) and plotted

the measured mass distribution. This distribution represented the response of the

detector to dijets of a particular true dijet mass.

To parameterize the whole range of the dijet masses in our analysis, we selected six

di�erent true dijet masses, ranging from 50 to 1000GeV/c2. By �tting the measured

mass distributions for each of the six samples, we determined the detector response

for these input values of true mass. Figures 4.8 and 4.9 show the measured mass

distributions of the Monte Carlo samples on a linear and a logarithmic scale, respec-
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Figure 4.6: Single Gaussian �ts to the fractional di�erences between the true and
measured jet pT for jets in the region 0:2 < j�j < 0:7. The mean values, �, of the
Gaussians are used to update the QFL energy scale.
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Figure 4.7: The mean values of the Gaussian functions from the �ts to the fractional
di�erences between the true and measured jet pT . The solid line is a third-order
polynomial �t. It indicates the additional correction (in %) that was added to the
measured 4-vectors of the jets in order to re-set the QFL energy scale.

tively. Also shown in the two plots are �ts of the parameterized detector response

to the histograms. The parameterized detector response used in this �t is a sum

of three Gaussian functions. Each individual Gaussian was normalized to unity and

then multiplied with a relative weight ni:

R(mtrue; mmeas; X) =
X
i

nip
2��i

exp
�(�i � mmeas)

2

2�2i
; i = 1; 2; 3; (4.11)

where each of the nine parameters, �i; �i and ni was further parameterized as a

function of true dijet mass according to

p = am2
true + bmtrue + c; p = �i; �i; ni; (4.12)

so that 27 parameters in total were used to parameterize the detector resolution.

The detector response histograms were normalized to unit area since the detector

smears the dijet energies but does not create or destroy events, e.g. the integrated
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Figure 4.8: Detector responses to dijets with true masses of 50, 125, 250, 500, 750,
and 1000GeV/c2, respectively. The histograms are a �t of the parameterized detector
resolution function used in the unsmearing procedure. All histograms are normalized
to unit area.
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Figure 4.9: Detector responses to dijets. The information of the previous �gure is
shown on a logarithmic scale.
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probability of �nding a dijet of any given true mass at some measured mass had to

be one. A simultaneous �t to all six histograms with a total of 278 non-zero entries

was performed using Minuit. The �2 of this �t was 365 / 251DF or 1.45 /DF. The

parameterized response reproduces both the high and low-end tails of the histograms.

The low-end tails of the distributions are more pronounced at high masses. This can

be explained by the fact that the jets are more collimated at higher energies, leading

to a larger mismeasurement of the energies of jets that are detected in one of the

crack regions, where the response of the detector is less well simulated.

In Fig. 4.10 the parameters of the detector resolution function are shown. As a result

of the low-side tails at high masses, the relative mean value of the detector response

function, �tot=mtrue � (n1�1 + n2�2 + n3�3)=mtrue, decreases slightly with the dijet

mass. The dijet mass resolution, �tot=mtrue � (n1�1 + n2�2 + n3�3)=mtrue, of the

detector improves from 11% for low dijet masses to about 8.5% for high masses (see

Fig. 4.10b)). The de�nitions of �tot and �tot have no impact on the physics of this

analysis and are de�ned for illustrative purposes only. Figure 4.10c) shows the sum

of the relative weights, ntot � n1 + n2 + n3, of the three Gaussians. As required by

the �tting procedure, ntot is equal to one over the whole range of the dijet mass.

4.7 Results of the Unsmearing Procedure

Figure 4.11 shows the correction factor,K, the ratio of smeared and true distributions,

as a function of the dijet mass. Considering the steepness of the di�erential cross

section, the correction factor is rather 
at, changing by less than 10% over the whole

range of dijet masses.

The qualitative behavior of the correction factor can be explained by the increasing

steepness of the dijet mass di�erential cross section. This increase can clearly be

seen in Fig. 4.12, which shows the same data as Fig. 3.10, but plotted on a doubly-

logarithmic scale. The dijet mass cross section falls approximately � 1=M6
jj at the
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Figure 4.10: The parameters of the detector resolution function as a function of the
dijet mass: a) �tot=mtrue, b) �tot=mtrue and c) ntot. The de�nitions of �tot and �tot
have no impact on the physics of this analysis and are de�ned for illustrative purposes
only. The unsmearing procedure requires ntot to be one.

low end of the measured spectrum and � 1=M12
jj at the high end of the selected dijet

mass range.

The �2-minimization between the data and the values of the convolution integral

(Eqn. (4.8)) returned a �2 of 20.1 / 14DF or 1.43 /DF. Graphical comparisons of the

smeared spectrum and the data are shown in Fig. 4.13.
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Figure 4.11: The unsmearing correction factor, K, the ratio of smeared and true
distributions, as a function of dijet mass.

4.8 Check of the Unsmearing Procedure

To check the internal consistency of the unsmearing procedure, we compared the cor-

rection factors from the analytic unsmearing procedure with those obtained from an

independent method, to which we refer to as the Monte Carlo procedure. The Monte

Carlo procedure involves generating a full Monte Carlo dijet mass spectrum, using

Pythia. With the de�nitions for the true and measured dijet mass of Section 4.3, we

formed the true and measured dijet mass distributions and obtained the corrections
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Figure 4.12: The partially corrected di�erential dijet mass cross section plotted on a
doubly logarithmic scale. The steepness of the distribution increases with the dijet
mass, leading to larger unsmearing corrections at higher dijet masses.

factors by comparing the cross sections of the two distributions as a function of the

dijet mass.

4.8.1 E�ciencies of the Monte Carlo Samples

The kinematical range of the Pythia events is controlled by minimum values for

the generated dijet mass, mgen � ŝ, and the generated transverse momentum of
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Figure 4.13: Comparison of the smeared �t to the data. a) Residuals of the �t
(data { smeared �t) / (statistical uncertainty). The error bars are of unit length in
terms of the statistical uncertainties. b) Fractional di�erences between the data and
the smeared �t ((data { smeared �t) / data). The error bars represent statistical
uncertainties only.



86 CHAPTER 4. THE UNSMEARING PROCEDURE

the events. Due to the steepness of the dijet mass cross section, the Monte Carlo

distributions used could not be generated in one sample. Instead, combined seven

subsamples, each starting at a higher generated mass than the next-lower one, to form

the complete distributions, similar to the data sample, which is built up from four

di�erent jet triggers. The simulated samples start at generated masses of 70, 100, 150,

210, 275, 360 and 450GeV/c2, respectively. Except for di�erent generated mass cuts

these samples were identical. Care was taken when the subsamples were combined

to reconstruct the full sample to ensure that each was fully e�cient in the dijet mass

range for which it was used. Since the true and the measured distributions were to

be constructed, we ensured that the selection criteria were fully e�cient for both.

Figures 4.14 and 4.15 show the e�ciencies of the true and measured distributions.

The sample starting at a generated mass of 50GeV/c2 was used exclusively to measure

the e�ciency of the 70GeV/c2 sample.

4.8.2 True and Measured Monte Carlo Distributions

The reconstructed distributions, built up from the seven subsamples (Fig. 4.16), shows

the fractional di�erences between the Monte Carlo distributions and the 4-parameter

function of Eqn. (3.12). These plots show that the reconstructed distributions are

smooth and that remaining ine�ciencies in the subsamples are small. The error bars

represent the statistical uncertainties only.

Whereas the �t of the 4-parameter function to the measured level cross section is

good (�2/DF = 1.0), the �t to the true level cross section returns a higher value of

�2/DF = 1.8. We believe that the imperfect �t is due to residual ine�ciencies in the

Monte Carlo subsamples, which could, in principle, be removed by generating larger

Monte Carlo samples. However, the existing sample required the generation of about

107 events. Considering the fact that these samples are used as a consistency check

of the analytic unsmearing procedure only, we consider the quality of the �ts to be

su�ciently high.
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Figure 4.14: The true dijet mass e�ciencies of the Monte Carlo samples, used to form
the full Monte Carlo distributions. Shown are the ratios of the cross sections of each
of the subsamples and the next-lower sample. The vertical lines indicate the dijet
mass above which a particular sample was used to build up the full distribution. The
range of a particular sample ends were the next one begins.
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Figure 4.15: The measured dijet mass e�ciencies of the Monte Carlo samples that
were used to form the full Monte Carlo distribution.
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Figure 4.16: The full Monte Carlo distributions. Plotted are the fractional di�erences
between the 4-parameter function, which was used to parameterize the data, and the
Monte Carlo cross sections. a) True level b) Measured level.

4.8.3 Results of the Consistency Check

The result of the internal consistency check is shown in Figs. 4.17 and 4.18. Figure

4.17 shows a comparison of the correction factors from the analytic method (applied

to the Monte Carlo sample) with the ones from the Monte Carlo method, the ratios

of the cross sections in the mass bins on the measured and the true level. The solid
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line is a polynomial �t to the Monte Carlo data points, which is used as an estimate

of the systematic uncertainty of the unsmearing procedure.

Figure 4.17: Comparison of the correction factors from the analytic method (full
circles) and the Monte Carlo method (open circles). The solid line is a smooth
�t to the Monte Carlo data points, which is used as an estimate of the systematic
uncertainty.

Another way of looking at the same data is to plot a comparison of the true Monte

Carlo distribution with the analytically unsmeared measured distribution, which is

shown in Fig. 4.18. In principle, the two distributions should be identical. Given

the imperfect input true distribution (Fig. 4.16a)), the agreement between the two

methods is good and we conclude that the analytic unsmearing procedure is internally
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consistent. Di�erences between the two methods will be quanti�ed in Section 5.2.2.

Figure 4.18: Fractional di�erences between the true Monte Carlo distribution and the
analytically unsmeared Monte Carlo cross section.



Chapter 5

Systematic Uncertainties

In this Chapter we will discuss the systematic uncertainties on the fully corrected

dijet mass cross section. We treat uncertainties on the cross section measurement

and the unsmearing procedure separately.

5.1 Uncertainties on the Cross Section

We consider six sources of systematic uncertainty associated with the measurement

of the dijet mass cross section: the absolute energy scale, the relative (�-dependent)

energy scale, the integrated luminosity, the relative normalizations of the jet triggers,

the z-vertex cut e�ciency and the trigger e�ciency.

5.1.1 Absolute Jet Energy Scale

The absolute energy scale is by far the largest source of systematic uncertainty on the

dijet mass cross section. We identify four components that all contribute individually

[79].

1. The Absolute Energy Calibration

This is the uncertainty on the response of the central calorimeter to single pions.

92
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Two sources contribute to this uncertainty. The �rst is our ability to properly model

the variation of the single-pion response over the face of a calorimeter tower. The

second is from the agreement of test beam and in situ calibrations for pions of the

same momentum, which provides a check of the reproducibility of the energy scale

calibration. The resulting high-side (low-side) uncertainty on the transverse energy

of the jets decreases from 1.8% to 1.7% (1.6% to 1.3%) with increasing jet ET .

2. The Jet Fragmentation Model

Because the calorimeter response to charged hadrons is not perfectly linear at low

energies, the observed jet energy is a function not only of the incident parton energy

but also of the momentum spectrum of the particles produced in the fragmentation

process. Therefore, the response of the calorimeter varies, depending on the details

of the jet fragmentation model that was used in the simulation. This uncertainty is

slightly asymmetrical as well, with high and low-side uncertainties decreasing from

1.7% to 1.2% with increasing jet ET .

3. The Stability of the Calorimeter with Time

Variations in the response of the central calorimeter with time were estimated to be

1% of the jet energy [80], independent of the energy.

4. The Underlying Event Corrections

The underlying event is the ambient energy produced in hadron collisions associated

with the soft interactions of spectator partons. The energy from the underlying event

will increase the energy found in the jet cone. In this analysis, the underlying event

energy was subtracted from the jet energy. The uncertainty associated with the

energy from the underlying event was estimated to be 1GeV of the jet ET . Taking

the average angle between the jets in the dijet system into account, this corresponds

to an uncertainty on the dijet mass of 2.2GeV.

In order to get an upper (lower) limit on the dijet mass cross section, we added

(subtracted) the 1-� value for each of the four uncertainties from the jet 4-momentum

and re-computed the di�erential cross section in each case. As the high-side and low-
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side uncertainties on the dijet mass cross section, we took the di�erences between

the central value and the upper and lower limits, respectively. Figure 5.1 shows the

uncertainties on the dijet mass cross section, due to the uncertainties on the absolute

energy scale. The contributions from the four sources are shown separately.

Figure 5.1: The systematic uncertainties on the dijet mass cross section, due to un-
certainties on the absolute energy scale, broken down into the components: calibra-
tion (dashed), fragmentation (dotted), stability (thin solid), underlying event (dash-
dotted) and total (thick solid). The uncertainties shown were obtained by using the
parameterization of the data.

These uncertainties were obtained using the parameterization of the data. When the

data themselves were used, values for the uncertainties were in the same range, but

included large bin-to-bin variations, due to the statistical 
uctuations in the data.
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The uncertainties on the dijet mass cross section were much larger than the uncer-

tainties on the jet energies themselves, because of the steepness of the dijet mass

spectrum. The total absolute energy scale uncertainties, the squared sum of the four

individual contributions, range from +17
�14% for low masses to +32

�24% for high masses. It

should be noted that this large uncertainty on the cross section is a result of uncer-

tainties on the transverse jet energies of at most 2.6%. The increase of the systematic

uncertainty with the dijet mass is due to the increasing steepness of the di�erential

dijet mass cross section (see Fig. 4.12).

5.1.2 Relative Jet Energy Scale

In addition to the uncertainty on the absolute jet energy scale, we assigned additional

uncertainties associated with the detector response as a function of �d. These uncer-

tainties were estimated using the method of dijet balancing [81], a procedure that

uses events with exactly two jets where at least one jet was detected in the central

region. Momentum conservation requires that the two jets in a dijet are back-to-back

to balance the transverse momentum of the event. By comparing the energies of the

two jets, the detector response as a function of �d, with respect to the central region,

was determined. The jet resolutions in the crack regions were typically 30 � 50%

worse than in the central calorimeter [82].

In order to establish the relative uncertainties on the jet energies, we identi�ed three

regions of the detector where we assigned uncertainties in addition to the absolute

energy scale uncertainties:

� the ninety degree crack (j�dj < 0:15),

� the thirty degree crack (0:9 < j�dj < 1:4) and

� the Plug Calorimeter (j�dj > 1:4).

Depending on the dijet invariant mass and the region of �d, we assign the symmetrical

uncertainties of Table 5.1 to the jet energies.
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j�dj < 0:15 0:9 < j�dj < 1:4 j�dj > 1:4

Mjj < 517GeV/c2 3% 4% 2%

Mjj > 517GeV/c2 6% 4% 2%

Table 5.1: The relative jet energy scale uncertainties.

For each region, we changed the 4-momentum of any jet in that region by the amount

speci�ed in Table 5.1 and recorded the resulting change in the di�erential cross section.

The total uncertainty on the cross section from the �-dependent uncertainties ranges

from 5% (9%) for dijet masses of 230GeV/c2 (970GeV/c2).

5.1.3 Integrated Luminosity and Trigger Normalizations

The luminosity at CDF was measured by two sets of scintillation counters, one set

upstream and one set downstream from the interaction point. The coincidence rate

of the two sets was proportional to the luminosity and its uncertainty was mainly due

to the uncertainty on the cross section of the counters. We assign an uncertainty on

the integrated luminosity of 4.1%, the value quoted by the most recent study of the

luminosity [83], independent of the dijet mass.

In addition to the uncertainty on the luminosity, we assigned uncertainties on the

relative normalizations of the jet triggers. These uncertainties were given by the

statistics in the overlap region where the trigger prescale factors were measured.

Using the Jet 100 trigger (which was not prescaled) as our reference trigger, we

assign uncertainties of 3.5, 1.7 and 1.9% to the relative normalizations of the Jet 20,

Jet 50 and Jet 70 trigger samples, respectively.
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z-Vertex Cut and Trigger E�ciencies

In Fig. 3.6 we plotted the z-vertex cut e�ciency as a function of the dijet mass. Based

on this �gure we estimate the uncertainties associated with the z-vertex cut e�ciency

to be 1%. Given the size of the other systematics, this uncertainty was disregarded.

Uncertainties on the trigger e�ciency were determined by the statistics in the onset

regions of the jet triggers. These uncertainties are estimated to be lower than 1% and

were also neglected.

5.2 Uncertainties on the Unsmearing Corrections

We consider three sources of systematic uncertainty that are associated with the

unsmearing procedure: our description of the tails of the detector resolution function,

the di�erences between the analytic and the Monte Carlo procedure and the size of

the additional energy corrections that we assigned to re-establish the QFL energy

scale.

5.2.1 Parameterization of the Detector Resolution

In order to estimate the systematic uncertainty due to our imperfect knowledge of the

tails of the detector resolution, we approximated the detector resolution with single

Gaussian functions and repeated the unsmearing procedure. The �t of the simpler

function to the detector response histograms is shown in Fig. 5.2. This �t reproduces

the core of the detector response but does not �t the tails of the distributions well.

The resulting correction factors for the single Gaussian parameterization of the de-

tector response are shown in Fig. 5.3. The di�erence between the correction factors

from the two di�erent parameterizations ranges from 1% at the low end to about

9% at the high end. The di�erences between the single Gaussian �t and our default

analysis is bigger at high masses because the single Gaussian �t overestimates the
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Figure 5.2: The �t of a single Gaussian function to the detector response histograms.
This simpler �t, used for systematic uncertainty determination, reproduces the core
of the detector response but does not �t the tails of the distributions well.
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high-end tail of the detector response at high masses, leading to a larger smearing

e�ect. We conservatively assigned a smoothly varying symmetrical uncertainty to the

dijet mass cross section that ranged from �1% for low dijet masses to �9% for the

highest mass bin.

Figure 5.3: The unsmearing correction factors from the central analysis (full circles),
compared to the ones obtained from the single Gaussian �t (open squares). The
di�erence between the correction factors from the two di�erent parameterizations
ranges from 1 to 9%.
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5.2.2 Di�erence between the Analytic and MC Procedure

The correction factors from the analytic procedure and the Monte Carlo method were

shown in Fig. 4.17. The di�erence between the smooth curve and the values from the

analytic method are at most 4%. We conservatively assigned a symmetrical, mass

independent uncertainty of �4% to the dijet mass cross section.

5.2.3 QFL Energy Scale Corrections

In order to estimate the systematic uncertainty associated with the additional correc-

tions that were applied to re-set the QFL energy scale, we varied these corrections by

the size of their statistical uncertainties. Figure 5.4 shows the corrections along with

the variations of plus and minus the statistical uncertainty of the default corrections.

The changes of the unsmearing factors with the variation of the energy scale correc-

tions are shown in Fig. 5.5. We assign a systematic uncertainty, ranging from +2
�4%

for low masses to +2
�8% for high masses. Note that negative changes in the correction

factor correspond to positive changes in the dijet mass cross section.

5.3 Combined Systematic Uncertainties

The systematic uncertainties on the dijet mass cross section are shown in Fig. 5.6.

We assume the individual components to be independent. The total systematic un-

certainty is therefore given by the squared sum of the individual uncertainties. For

presentation purposes the three uncertainties associated with the unsmearing pro-

cedure were combined into one. Similarly, we combined the uncertainties on the

integrated luminosity and the relative jet trigger normalizations. The absolute jet

energy scale uncertainties dominate over the whole dijet mass range. The overall

systematic uncertainty ranges from +19
�17% for low masses to +34

�28% for the highest dijet

mass bin.
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Figure 5.4: The additional corrections to the QFL energy scale and 1-� variations of
the statistical uncertainty.

Figure 5.5: Unsmearing corrections as a function of the dijet mass: Default analysis
(open circles), QFL scale corrections +1� and �1� (triangles).
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Figure 5.6: The systematic uncertainties on the dijet mass cross section as a func-
tion of the dijet mass. We show the total systematic uncertainty (thick solid), the
absolute jet energy scale (widely dash-dotted), the relative jet energy scale (dotted),
the combined uncertainties on the unsmearing procedure (dashed) and the combined
uncertainties on the total luminosity and the relative jet trigger normalizations (nar-
rowly dash-dotted).



Chapter 6

Results

In this Chapter we compare the fully corrected dijet mass cross section with predic-

tions of next-to-leading order (NLO) QCD calculations. We quantify the di�erences

between our data and the calculations for di�erent choices of parton distribution

functions and di�erent values of the renormalization scale. We also compare our

measurement with results from the D� collaboration.

6.1 The Fully Corrected Cross Section

The values of the fully corrected dijet mass cross section, together with the statistical

and systematic uncertainties, are listed in Table 6.1. The di�erential cross section in

each dijet mass bin is given by

d�=dMjj = N=(K�Mjj L �); (6.1)

where N is the number of events in the bin, K is the unsmearing correction factor,

�Mjj is the width of the mass bin, L is the integrated luminosity and � is the e�ciency

of the trigger and z-vertex selections.

Across the range of measured dijet masses, the cross section falls by almost six orders

103
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Mjj bin average Mjj number d�=dMjj statistical systematic

(GeV/c2)
Trigger

(GeV/c2) of events (pb/GeV/c2) uncertainty uncertainty

180 - 198 188 979 6.07�102 3.2% +20
�17%

198 - 217
Jet 20

207 581 3.42�102 4.1% +19
�17%

217 - 241 228 9343 1.81�102 1.0% +19
�16%

241 - 265 Jet 50 252 5131 9.81�101 1.4% +19
�16%

265 - 292 277 2943 4.98�101 1.8% +19
�17%

292 - 321 305 8366 2.78�101 1.1% +19
�17%

321 - 353 Jet 70 335 4785 1.43�101 1.4% +20
�17%

353 - 388 368 2714 7.41�100 1.9% +20
�18%

388 - 427 405 12342 3.83�100 0.9% +21
�18%

427 - 470 446 6781 1.89�100 1.2% +21
�19%

470 - 517 491 3551 9.07�10�1 1.7% +22
�19%

517 - 568 539 1910 4.50�10�1 2.3% +23
�20%

568 - 625 592 904 1.90�10�1 3.3% +25
�21%

625 - 688
Jet 100

652 392 7.42�10�2 5.1% +26
�22%

688 - 756 716 168 2.92�10�2 7.7% +28
�23%

756 - 832 784 77 1.18�10�2 11% +30
�25%

832 - 915 865 26 3.57�10�3 20% +32
�26%

915 - 1025 968 9 9.03�10�4 33% +34
�28%

Table 6.1: The fully corrected dijet mass cross section and the statistical and system-
atic uncertainties.

of magnitude. The experimental uncertainties on the cross section are dominated by

the systematic uncertainties, except at the highest dijet masses.

6.2 QCD Calculations

For this analysis we selected high transverse momentum events where soft radiation

has been removed by a cut on the minimum transverse energy of the jets. At the
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same time, all individual hadrons within a jet cone were replaced by a single jet axis.

Because the hadronic behaviour was averaged out, we can relate the hadronic jet axis

and energy observed in the experiment to a jet constructed from a parton shower,

calculated with perturbative QCD predictions.

We obtained theoretical predictions from JETRAD, version 2.0 [84], a parton level

Monte Carlo program for inclusive one and two-jet production at hadron colliders.

The calculations have been performed to next-to-leading order (NLO) in QCD. At

leading order, the jet is modeled by a single parton and this lone parton's direction and

energy are taken as the jet's axis and energy. The addition of NLO e�ects provides

important improvements over leading order calculations. Firstly, the dependences

on the unphysical renormalization and factorization scales are reduced, because the

truncation of the perturbative series is postponed to one higher order. As a result,

the normalization is more certain. Secondly, the sensitivity to the jet algorithm is

reduced, because three partons are now admitted in the �nal state. A jet may now

be formed by the merging of two partons. And thirdly, by admitting radiation into

the �nal state, kinematic constraints due to the 2 ! 2 nature of the leading order

prediction are relaxed.

The JETRAD program computes the lowest order matrix elements for the lowest

order 2! 2 scattering processes and then uses Monte Carlo techniques to integrate

over the phase space for the �nal state partons to obtain the two-jet cross section.

A jet �nding algorithm is then applied to the �nal state partons. Two partons are

merged if they are within a spatial distance Rsep = 1:3R. The value of Rsep has been

determined to ensure best correspondence between experimental jets and those from

the calculations. Contributions from the underlying event are not included in the

calculations. Details on the theoretical calculations of the two-jet cross section can

be found in [84, 85].
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6.3 Comparison of Data and QCD

In the following, we compare our fully corrected data with predictions from the JET-

RAD program. There are several uncertainties associated with NLO QCD calcula-

tions, the most important ones being the input parton distribution function (PDF)

and the choice of the renormalization scale, �.

The parton distributions, fi, are determined from a global �t to a wide range of deep

inelastic scattering data. The basic procedure is to parameterize the fi(x;Q
2) at a

low value of Q2 = Q2
0, so that the fi(x;Q

2) can be calculated at higher Q2 by using

the next-to-leading-order DGLAP evolution equations. The data points are �tted for

all Q2
2 > Q2

1, where Q
2
1 > Q2

0 is a value of Q
2 where perturbative QCD is believed to

be the dominant contribution. The results of the �tting procedure (and, therefore, of

the parameterization) are sensitive mainly to the minimum Q2 value of the data that

are included in the �t, the uncertainty on the determination of the gluon density at

high x and the value of �s(M
2
Z).

The two sets of parameterizations most commonly used are those of the CTEQ Col-

laboration and the group of A.D.Martin, R.G.Roberts and W.J. Stirling (MRS). We

chose the CTEQ4M [86] parameterization as our default theory. Other parameteriza-

tions we used included CTEQ4HJ [86], MRST, MRST(g ") and MRST(g #) [87]. The

di�erence between CTEQ4M and CTEQ4HJ is that the gluon density of the latter

is higher at high x. It was adjusted to �t the data from the CDF inclusive jet-ET

analysis [12], for which, at high jet-ET , the CTEQ4M prediction underestimated the

data. Similarly, MRST(g ") and MRST(g #) are variations of the default MRST pa-

rameterization with higher and lower gluon densities, respectively. The MRST family

are the most recent PDF's available. We also tested older versions of the above

parameterizations, CTEQ3M [88], MRS(R2) [89] and MRS(D0') [90].

As our default normalization scale we chose � = 0:5Emax
T , where Emax

T is the energy

of the highest-energy jet in the event. The value of the renormalization scale should
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re
ect the Q2 scale of the events. For inclusive measurements with two more jets

� = 0:5Emax
T is the value most commonly used [91].

Figure 6.1 shows a comparison of the fully corrected data with our default theory,

CTEQ4M with � = 0:5Emax
T , on a logarithmic scale. The error bars in this �gure rep-

resent the statistical and systematic uncertainties, added in quadrature. The overall

agreement between data and QCD predictions over almost six orders of magnitude is

excellent.

Figure 6.2 shows the same comparison on a linear scale. We plot the fractional

di�erences, (data { theory) / theory, between the data and the CTEQ4M prediction

as a function of dijet mass. To compare other theories with CTEQ4M, the values of

(QCD { CTEQ4M) /CTEQ4M, where QCD stands for CTEQ4HJ, MRST, MRST(g ")

and MRST(g #), respectively, are also shown. The error bars indicate the statistical

uncertainties and the shaded area represents the combined systematic uncertainty

on the data. Note that the systematic uncertainties in Fig. 6.2 are correlated as a

function of dijet mass (see below).

We see a trend towards an excess in the data over QCD calculations at high dijet

masses. The CTEQ4 parameterizations generally reproduce the data within one stan-

dard deviation of the systematic uncertainties. As expected, at high dijet masses,

CTEQ4HJ reproduces the data better than CTEQ4M. We observe a normalization

di�erence between data and QCD of between 5 and 10% for the CTEQ4 family.

The MRST parameterizations exhibit a larger normalization di�erence of about 20%.

While MRST(g #) has the worst overall normalization, its shape describes the data

better than MRST and MRST(g ").

As a check of the dependence of the calculations on the choice of �, we varied the value

of � between 0:5Emax
T and 2:0Emax

T for the CTEQ4M parameterization, see Fig. 6.3.

While the di�erences between the choices 0:5Emax
T and Emax

T are small, compared to

di�erences between di�erent parameterizations, changing the value from 0:5Emax
T to

0:25Emax
T results in a change of the normalization of about 25%.
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Figure 6.1: A comparison of the fully corrected data (full circles) with predictions from
the JETRAD Monte Carlo program, using CTEQ4M and � = 0:5Emax

T (solid line).
The bars represent the statistical and systematic uncertainties, added in quadrature.
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Figure 6.2: A comparison of our data with predictions from the JETRAD program for
CTEQ4M (full circles) and comparisons of other parameterizations with CTEQ4M:
CTEQ4HJ (solid), MRST (dotted), MRST(g ")(dash-dotted) and MRST(g #)
(dashed). All QCD calculations were performed with � = 0:5Emax

T . The error bars
indicate the statistical uncertainties and the shaded area represents the combined
systematic uncertainty.
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Figure 6.3: A comparison of our data with predictions from the JETRAD program
for CTEQ4M, � = 0:5Emax

T (full circles) and other choices of �: � = 0:25Emax
T

(dashed), � = Emax
T (dotted) and � = 2Emax

T (dash-dotted). The error bars indicate
the statistical uncertainties and the shaded area represents the combined systematic
uncertainty.
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QCD calculations with other parton distribution functions and other choices of � are

not plotted, but are quantitatively compared to the data in Section 6.4.

6.4 �
2 Evaluation between Data and Theories

To quantify the di�erences between the data and the theoretical predictions, we have

chosen a �2 method [92]. To take the correlations of the individual systematic uncer-

tainties into account, we made the following assumptions:

1. Each of the components of the total systematic uncertainty are 100% correlated

as a function of dijet mass. For instance, if the luminosity is mismeasured by

one standard deviation of the systematic uncertainty, it is mismeasured by the

same amount in all bins.

2. The individual components of the systematic uncertainty, e.g. the integrated

luminosity and the calibration of the absolute energy scale, are uncorrelated

and can 
uctuate independently.

To �rst order, the �2 is de�ned by the matrix equation

�2 = �TV �1�; � =

0
BBBBBBBBBBBB@

�1

�2

:

:

�n

1
CCCCCCCCCCCCA
; (6.2)

where � is the column vector of the di�erences between the data and the theory in

the 18 dijet mass bins. It has the entries

�i =
d�datai

dMjj

� d�theoryi

dMjj

; i = 1; 18: (6.3)
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The matrix V �1 is the inverse of the variance matrix

V =

0
BBBBBBBB@

�211 �212 : : �21n

: �222 : : :

: : : : :

�2n1 �2n2 : : �2nn

1
CCCCCCCCA

(6.4)

and the �2ij are given by

�2ij =
12X
k=1

�kij �i(sys
k) �j(sys

k) + �ij �i(stat)
2; (6.5)

where �i(stat) is the statistical uncertainty and �i(sys
k) is the contribution to the

systematic uncertainty from the individual component, k, in the ith mass bin. Tak-

ing the sum over all twelve individual uncertainties, rather than the total systematic

uncertainty, accounts for the fact that the individual components are uncorrelated.

All correlation coe�cients, �kij, are de�ned to be one, since all components of the sys-

tematic uncertainty are taken to be 100% correlated. A variation of this assumption

is discussed in Appendix A.

The systematic uncertainties on the dijet mass cross section are slightly asymmetri-

cal. Since all data points are above the theoretical predictions, we used the low-side

systematic uncertainties in our �2 evaluation. The individual values for the 18 dijet

mass bins are listed in Table 6.2.

Table 6.3 summarizes the results of the �2 evaluation. We list the �2 values (for 18

degrees of freedom) and the corresponding probabilities for all theories we tested.

That the MRST(g #) produces a better �2 than MRST(g ") is due to the correlation

of the systematic uncertainties. Because the individual components of the systematic

uncertainties are completely correlated, the �2 contribution arising from a normaliza-

tion di�erence is much smaller than the contributions from a shape di�erence between

two curves. Similarly, in the case of CTEQ4M, the lowest �2 is realized with the choice
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Mjj Individual Systematic Uncertainties on the Cross Section (%)

(GeV/c2) cal frag uevt stab rel QFL lum uns tails J20 J50 J70 tot

188 7.8 7.1 7.2 6.2 5.0 2.0 4.1 4.0 2.0 3.5 1.7 1.9 16.9

207 7.8 7.1 6.6 6.2 5.2 2.4 4.1 4.0 2.4 3.5 1.7 1.9 16.8

228 7.8 7.1 6.0 6.2 5.4 2.7 4.1 4.0 2.8 { 1.7 1.9 16.4

252 7.9 7.1 5.5 6.3 5.5 3.1 4.1 4.0 3.2 { 1.7 1.9 16.5

277 7.9 7.1 5.1 6.4 5.7 3.4 4.1 4.0 3.7 { 1.7 1.9 16.6

305 8.1 7.2 4.7 6.5 5.9 3.8 4.1 4.0 4.1 { { 1.9 16.8

335 8.2 7.3 4.4 6.6 6.1 4.1 4.1 4.0 4.5 { { 1.9 17.1

368 8.4 7.5 4.1 6.8 6.2 4.5 4.1 4.0 4.9 { { 1.9 17.6

405 8.7 7.7 3.9 7.0 6.4 4.8 4.1 4.0 5.3 { { { 18.0

446 9.0 8.0 3.7 7.3 6.6 5.2 4.1 4.0 5.7 { { { 18.6

491 9.4 8.3 3.5 7.6 6.8 5.5 4.1 4.0 6.1 { { { 19.3

539 9.9 8.7 3.4 8.0 7.0 5.9 4.1 4.0 6.5 { { { 20.2

592 10.5 9.2 3.2 8.5 7.1 6.2 4.1 4.0 6.9 { { { 21.2

652 11.2 9.8 3.2 9.1 7.3 6.6 4.1 4.0 7.4 { { { 22.3

716 11.9 10.5 3.1 9.7 7.5 6.9 4.1 4.0 7.8 { { { 23.5

784 12.8 11.2 3.0 10.3 7.7 7.3 4.1 4.0 8.2 { { { 24.8

865 13.7 12.0 3.0 11.1 7.8 7.7 4.1 4.0 8.6 { { { 26.3

968 14.7 12.8 2.9 12.0 8.0 8.0 4.1 4.0 9.0 { { { 27.8

Table 6.2: The individual low-side systematic uncertainties (in %) for the 18 dijet mass
bins. The shorthand notations in the header stand for the following: cal: calibration of
the central calorimeter, frag: jet fragmentation, uevt: underlying event, stab: stability
of the central calorimeter, rel: relative energy scale, QFL: QFL energy scale shift, lum:
integrated luminosity, uns: unsmearing procedure, tails: parameterization of the tails
of the detector response, J20, J50 and J70: relative normalizations of the Jet 20, 50
and 70 triggers, tot: total systematic uncertainty.
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PDF D �2 (18 DOF) probability
(where � = DEmax

T )

CTEQ4M 0.5 41 0.16�10�2
CTEQ4HJ 0.5 26 0.99�10�1
MRST 0.5 22 0.24

MRST(g ") 0.5 25 0.13

MRST(g #) 0.5 17 0.56

CTEQ4M 0.25 28 0:67 � 10�1
CTEQ4M 1.0 40 0:22 � 10�2
CTEQ4M 2.0 33 0:16 � 10�1
CTEQ4HJ 1.0 22 0.22

CTEQ3M 0.5 39 0:30 � 10�2
CTEQ3M 1.0 45 0:38 � 10�3
MRST 1.0 18 0.48

MRS(R2) 0.5 40 0:21 � 10�2
MRS(D0') 1.0 37 0:58 � 10�2

Table 6.3: The �2 values between the data and the theories and the corresponding
probabilities. The �rst theory, CTEQ4M with � = 0:5Emax

T , is our default theory.
The second and third groups of theories are graphically compared to the default
theory in Figs. 6.2 and 6.3, respectively. The predictions of the last group are not
shown graphically.

of � = 0:25Emax
T , because for this choice of � the shape describes the data better than

for any other value of �. More details of the �2 procedure are given in Appendix A.

In conclusion, for the assumption of completely correlated systematic uncertainties,

the MRST family and the CTEQ4HJ parameterization describe our data best. The

lowest value of �2 is realized with MRST(g #) and � = 0:5Emax
T . All older versions

of the above parameterizations, CTEQ3M, MRS(R2) and MRS(D0'), return higher �2

values than their modern counterparts. The above ranking holds for plausible values

of the correlation coe�cients (see Appendix A). However, since the absolute values of
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�2 depend on the assumption of completely correlated systematic uncertainties, we

refrain from excluding any of the theories we tested.

6.5 Comparison of CDF and D� Data

A comparison of our results with those of the D� experiment [93] is shown in Fig. 6.4.

Here, data from both experiments are compared to calculations from JETRAD, using

the CTEQ4M parton distribution function and a normalization scale of � = 0:5Emax
T .

However, the kinematical ranges for the two measurements are di�erent. The CDF

measurement was performed in the region j�j < 2 and j cos ��j < 2=3, whereas the

D� measurement was made in the region j�j < 1, with no requirement on cos ��. The

D� collaboration also used a slightly di�erent de�nition of the dijet mass. Assuming

that the jets are massless, the dijet mass can be measured as

Mjj =
q
2Ejet1

T Ejet2
T [cosh(��)� cos(��)]; (6.6)

where �� and �� are the di�erences in � and � between the two jets, respectively.

Given the statistical and systematic uncertainties, the data from the two experiments

are in very good agreement. Both measurements are dominated by systematic uncer-

tainties. Both experiments �nd that the QCD predictions are generally lower than

the data at high dijet masses but QCD reproduces the data for both within the

experimental uncertainties.
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Figure 6.4: A comparison of our data (solid circles) with results from the D� collab-
oration (open circles). The systematic uncertainties are indicated by the shared area
(CDF) and the solid lines (D�), respectively. Note that the kinematical ranges are
di�erent for the two experiments.



Conclusions

We have used the CDF Run 1B data sample of 86pb�1 to measure the fully corrected

dijet mass cross section in the kinematical region j�j < 2 and j cos ��j < 2=3. The

data have been corrected for calorimeter response and for detector resolution e�ects,

using an analytic unsmearing procedure. The internal consistency of this procedure

has been demonstrated.

We have compared the fully corrected data with predictions from next-to-leading

order QCD calculations, obtained with the JETRAD Monte Carlo program. We see

the same trend towards an excess in the data at high dijet masses as in the jet-ET

distribution at high ET . A �2 evaluation of the di�erences between the data and

the calculations for di�erent parton distribution functions and for di�erent choices of

the renormalization scale has been performed. Assuming 100%-correlated systematic

uncertainties, the MRST family and the CTEQ4HJ parameterization describe our

data best. The above ranking holds for plausible values of the correlation coe�cients.

However, since the absolute values of �2 depend on the assumption of completely

correlated systematic uncertainties, we do not exclude any of the theories we tested.

Finally, we have compared our data with results from the D� collaboration and �nd

the data from the two experiments to be in good agreement.

Until the Large Hadron Collider (LHC) commences operation in the year 2005, the

Tevatron will remain the world's highest-energy accelerator. Currently, preparations

for the next Tevatron run (Run 2) are in full swing. Run 2, which is scheduled to

begin in April 2000, is expected to collect 2 fb�1 of data at a slightly higher center-

117
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of-mass energy of 2TeV. The increase in statistics by a factor of 20, compared to the

present analysis, will decrease the statistical uncertainty signi�cantly.

To handle the higher rate of data taking during Run 2, the gas-based Run 1 Plug

Calorimeter has been replaced by a scintillator/absorber sandwich calorimeter with an

improved energy resolution. While the hardware upgrade of the CDF detector nears

its completion, a signi�cant e�ort is being made to improve the understanding of the

absolute energy scale of the central calorimeter, the source of the largest experimental

uncertainty in this analysis. Although this constitutes a challenging task, it is hoped

that the Run 2 data sample will enable us to test Quantum Chromodynamics with

higher accuracy and that our understanding of the strong interactions will continue

to improve.



Appendix A

Details of the �2 Procedure

In this Appendix we discuss the �2 procedure that was used to quantify the di�erences

between our data and the QCD predictions in more detail. This discussion is mo-

tivated by fact that MRST(g#), the parameterization whose predictions are furthest

away from the data points, produces the best �2 of all the theories we tested.

A.1 Floating Normalization of the Theory

From Fig. 6.2 it can be seen that, whereas the normalization di�erences between the

CTEQ4M parameterization and the data are only about 5%, the normalization for

the MRST(g #) prediction underestimates the data by about 20%. Despite this larger

normalization di�erence, MRST(g #) provides, according to the �2 method, a better

description of our data than CTEQ4M.

We explain this with the correlations of the systematic uncertainties: For correlated

uncertainties, normalization di�erences are less costly, in terms of the overall �2, than

shape di�erences. To investigate the relative importance of normalization and shape

di�erences further, we calculated the �2 between the data and four of the theories

of Fig. 6.2, for freely 
oating normalizations, n. In other words, we varied the �i

119
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according to

�i =
d�data

dM i
jj

� n
d�theory

dM i
jj

: (A.1)

The total �2 between the data and the theories, as a function of n, are shown in

Fig.A.1. For reasons that will become clear below, we used the total systematic

uncertainties, rather than the sum over all individual contributions. This change does

not a�ect the qualitative behaviour of the �2. Since (for some values of n) the theory

predictions are above the data, we used the arithmetic mean of the absolute values

of the systematic uncertainties. We emphasize that this procedure was performed

merely to understand the behaviour of the �2 and that it has no obvious physical

interpretation, since there is no physical parameter in the theory that would change

the normalization of the cross section uniformly for all dijet masses. Figure A.1 shows

that all theories return their lowest �2 for normalizations of n < 1. Naively, one would

expect the �2 to favour a normalization of n > 1, in order to minimize the di�erences

between the theories and the data.

The following simple numerical example suggests why the �2 procedure might prefer

a normalization of n < 1, even for theoretical predictions that are below the data in

every bin. The toy model of Table A.1 has characteristics similar to those of our data

sample: Large correlated systematic uncertainties that increase in size and negligible

statistical uncertainties. This model is to be compared to predictions of a toy theory,

listed in Table A.1 as well.

bin data �(sys) �(stat) theory

1 100 20 2 90

2 150 60 10 90

Table A.1: Values and uncertainties of a toy data set and values of a toy theory.

A graphical comparison of data and theory is shown in Fig.A.2. The error bars

represent the 100%-correlated systematic uncertainties. Statistical uncertainties not
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Figure A.1: The total �2 values between the data and the theoretical predictions for
freely 
oating normalizations, n, of the theories. The default normalization (n = 1)
is indicated by the vertical line.

are shown. Note that, in both bins, the data points are higher than the theoretical

predictions.

In this example, the total �2 between the data and the theory is 7.0. If the normal-

ization of the theory is allowed to 
oat freely, the lowest �2 value of 1.5 is realized

for a normalization of n = 0:85, a value that moves the theory further away from the

data. To understand why moving the theory away from the data leads to a lower �2,

it is instructive to look at the terms that contribute to the total �2. For the simple
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Figure A.2: Graphical comparison of a toy data set with a toy theory. The total �2

can be improved by lowering the normalization of the theory.

case of two data points, the �2 is given by

�2 =
�2

1[�2(sys)2+�2(stat)
2]�2�1�2�12�1(sys)�2(sys)+�

2

2[�1(sys)2+�1(stat)
2]

�1(sys)2�2(stat)2+�2(sys)2�1(stat)2+�1(stat)2�2(stat)2+(1��2
12
)�(sys1)2�(sys2)2

: (A.1)

A change of the normalization only a�ects the values of �1 and �2, which only appear

in the numerator. Assuming �12 = 1 and dividing numerator and denominator of

Eqn. (A.1) by �1(sys)
2�2(sys)

2 the �2 can be approximated for very small statistical

uncertainties by

�2 � c

 
�2

1

�1(sys)2
� 2�1�2

�1(sys)�2(sys)
+

�2
2

�2(sys)2

!
= c

 
�1

�1(sys)
� �2

�2(sys)

!2

; (A.2)

where all �-independent terms have been absorbed into the constant, c. From

Eqn. (A.2) it can be seen that the value of �2 does not depend on the absolute values

of �1 and �2. Instead, the �
2 is minimal for the case �1

�1(sys)
= �2

�2(sys)
. In other words,

the �2 procedure prefers constant di�erences, in terms of the systematic uncertainty,

between the data and the theory.

To verify the above hypothesis, we consider the di�erences between the toy data

and the toy theory. Figure A.3 shows the values of (data { theory)/ (systematic



A.1. FLOATING NORMALIZATION OF THE THEORY 123

uncertainty) for two values of n: n = 1 and n = 0:85, the value of n for which the �2

is at its absolute minimum.

Figure A.3: The di�erences between the toy data set and a theory in terms of the
systematic uncertainties. Although the theory is further away from the data points
for a normalization of n = 0:85, the resulting �2 is lower than for n = 1. The error
bars indicate the statistical uncertainties.

Although the theory is further away from the data in the case of n = 0:85, the �2

is lower than for n = 1. The reason for this counter-intuitive behaviour is that, at

n = 0:85, the di�erence between the data and the theory is constant in terms of the

systematic uncertainty. This corresponds to a normalization di�erence between the

data and the theory, which results in a lower �2 than a di�erence in shapes. Because,

as with our data, the relative size of the systematic uncertainties grows with the bin

number, a constant o�set between data and theory can be achieved by moving the

theory to even lower values.

From Fig.A.3 it is also clear that contributions to the �2 from normalization and

shape di�erences are inseparable. If the correlated systematic uncertainties increase

(or decrease) with the bin number, changing the overall normalization of the theory

inevitably means altering its shape, relative to the data.

Figure A.4 shows the corresponding information for our dijet mass data and the four

theories. For each theory, we plot the values of (data { theory) / (systematic uncer-
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tainty) for two choices of the normalization: n = 1 and n = nmin, where nmin is

the value of n for which the �2 between the data and the theory is at its absolute

minimum. As in Fig.A.1, the systematic uncertainty plotted in Fig.A.4 is the to-

tal systematic uncertainty (and not the sum over all individual components). Also

displayed are linear �ts to the data points and the statistical uncertainties.

We can see from Fig.A.4 that for each theory (with the possible exception of CTEQ4HJ)

the linear �t to the data points has a slope that is smaller for n = nmin than for n = 1.

For MRST(g #) and CTEQ4HJ the slope of the linear �t is smaller than for CTEQ4M

and MRST. Accordingly, the latter two return a higher �2 value (see Fig.A.1). The

low value of �2 for MRST(g #) can be explained by the fact that the data points are

much less scattered around the straight line �t, particularly at low masses. This is

con�rmed by the plot of the fractional di�erences between the data and the theories

(Fig. 6.2). The parameterization that reproduces the shape of the data best at the

low end of the dijet mass spectrum is MRST(g #). Although the situation is not as

clear as in the case of the toy model, Fig.A.4 shows that the above argument can, at

least in part, explain the �2 behavior.

A.2 Variation of the Correlation Coe�cients

We expect all systematic uncertainties to be 100% correlated. However, we cannot

prove this assumption and there is an uncertainty associated with the values of the

correlation coe�cients. To check the dependence of the results of the �2 comparison

on the correlation coe�cients, we varied their values systematically from 0 to 1.

Figure A.5 shows the �2 (for 18 DOF) for the four theories as a function of the

correlation coe�cients. Note that all values of �kij in Fig.A.5 are identical and are

changed simultaneously. In principle, each value of �kij could be varied independently.

The �2 exhibits a strong dependence of the correlation coe�cients for values of

� > 0:9, where the �2 rises drastically. This sharp increase can be explained with
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Figure A.4: The di�erences between the data and the four theories in terms of the
absolute systematic uncertainties, as a function of dijet mass. For each theory, the
values for two choices of n are plotted: n = 1 and n = nmin, with nmin, the value
of n for which the �2 between the data and the theory is in its absolute minimum.
Also shown are linear �ts to the data points. The errors bars represent the statistical
uncertainty.
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Figure A.5: The dependence of the total �2 on the correlation coe�cient �.

the de�nition of the �2 (Eqn. (A.1)), which has a pole for 100%-correlated systematic

uncertainties and zero statistical uncertainties. In our analysis, the statistical uncer-

tainties are much smaller than the systematic uncertainties over most of the measured

dijet mass range. Therefore, small deviations from values of � = 1 can lead to large

changes in the �2.

From Fig.A.5 we can see that the data prefer the MRST and MRST(g #) parameter-

izations over CTEQ4HJ only for 100%-correlated uncertainties (� = 1). For smaller

values of the correlation coe�cients, the normalization di�erence between the data

and MRST(g #) results in higher �2 values. For the extreme case of uncorrelated
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uncertainties (� = 0), MRST(g #) is the theory that describes the data least, a result

that one intuitively expects by looking at Fig. 6.2.

A.3 Summary of the �
2 Procedure

When we established the systematic uncertainties on the dijet mass cross section, we

varied each component individually. This is re
ected by the sum over all individual

components in the �2 calculation. The assumption that each component of the sys-

tematic uncertainty is 100% correlated is correct, provided that we have identi�ed all

of its individual components. We can see two ways of re�ning the �2 calculation.

1. More components of the systematic uncertainty could be identi�ed. This would

involve breaking up the known components even further. For instance, compo-

nents of the uncertainty on the calibration of the calorimeter could be identi�ed

that a�ect di�erent energy ranges di�erently (leakage, scintillator aging etc.).

2. Monte Carlo experiments could be performed to measure the correlation co-

e�cients for each component of systematic uncertainty. However, considering

the strong dependence of the �2 on the values of �kij, it is doubtful that an

enlightening accuracy could be achieved.

Looking at Fig.A.5, we see that for low values of �kij the �
2 becomes unphysically

small for all theories. Nonetheless, for plausible values of �kij, the ranking of the

parameterizations of the PDF holds and we conclude that MRST(g #) and CTEQ4HJ

describe our data best. Since the absolute values of �2 exhibit a dependence on the

correlation coe�cients, we refrain from excluding any of the theories we tested.
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